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Executive Summary 

This report describes an evaluation to investigate the concept of Safety in Numbers in the context 

of programs meant to increase walking and biking. SIN posits that there is an inverse relationship 

between walking/bicycling volumes and the probability of a motorist collision with a pedestrian 

or bicyclist (Jacobsen, 2003). 

Prior to this evaluation, the research team conducted a literature review synthesizing the 

evidence related to the SIN theory across many fields of study and areas of practice including 

engineering, planning and land use, sociology, psychology, education, public health, 

enforcement, human factors, and others (Kehoe et al., 2022). The review concluded that there 

was indeed evidence that the SIN phenomenon is real. However, it also pointed out that there are 

many challenges in investigating SIN, including the variety, amount, and quality of data 

available to researchers.  

With this understanding of SIN, the research team developed a plan to evaluate the relationships 

between pedestrian and bicyclist programs and respective volumes, and the relationship between 

said volumes and crashes. For purposes of this study, programs were defined as ongoing or 

repetitive efforts directed toward the behavior and well-being of pedestrians and bicyclists. A 

program scan identified 230 candidate programs, 15 of which were determined to have data 

suitable for analysis. After discussions with program managers and additional investigation, 

three cities emerged as the most suitable sites to conduct evaluations of their programs. More 

details on site/program selection are available in the report section Site Selection. 

 Fort Collins, Colorado, and its Safe Routes to School program, Open Streets events, 

Bicycle Ambassador Program, and Bike to Work Day 

 Philadelphia, Pennsylvania, and its Indego Bikeshare Initiative 

 Anchorage, Alaska, and its Bikeology program 

The research team worked to acquire the relevant data sets, including program metrics (e.g., 

numbers of participants or attendees at program events), crash data, and traffic volume data. 

Each of the data sets required individualized plans for data preparation. These included 

converting short term volume counts into annual average daily volumes, connecting and 

interpolating data from single-mode counters, geocoding count and crash locations, and 

determining appropriate crash zone sizes. 

Programs were evaluated on how effective they were at increasing bicyclist and pedestrian 

volumes using the established statistical models noted in the work of Elvik (2013) to analyze 

SIN effects. Results for Fort Collins were mixed and raised questions about the nature of the 

programs evaluated and the quality of the underlying data. The bikeshare program in 

Philadelphia was found to positively affect bicyclist volumes with no effect on pedestrian 

volumes. Program data from Anchorage were insufficient for analysis. 

The SIN phenomenon was investigated with similar statistical models. Complete SIN is said to 

occur when bicyclist/pedestrian crashes increase at a rate less than proportional to simultaneous 

increases in bicyclist/pedestrian and motor vehicle volumes. In contrast, partial SIN occurs when 

bicyclist/pedestrian crashes increase at a rate less than proportional to increases in 
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bicyclist/pedestrian or motor vehicle volumes. Results indicated complete SIN for bicyclists and 

partial SIN for pedestrians in both Fort Collins and Anchorage, but no evidence of SIN in 

Philadelphia.  

An ad-hoc analysis was conducted to investigate the role of infrastructure. The presence of 17 

pedestrian/bicyclist facilities (bike lanes, sidewalks, crosswalks, pedestrian hybrid beacons, etc.) 

was coded for each crash observed in Philadelphia. This new information was added to 

previously described models and yielded statistically significant results for volumes and crash 

rates among both modes.  

Robust, multifaceted data are required to evaluate program effectiveness and SIN. The literature 

and the analysis described in this report demonstrate how these data are challenging to obtain. 

The research team encountered several challenges concerning the data and developed solutions 

from which future researchers may benefit.   
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Introduction 

Pedestrian and bicyclist safety remain a complex problem in the United States. In 2020 an 

estimated 6,205 pedestrians and 891 bicyclists and other cyclists were killed in traffic crashes 

(NCSA, 2021); there were 76,000 and 49,000 injuries for these groups respectively in 2019 

(NCSA, 2020). Over the course of the decade 2010 to 2019, pedestrian fatalities in urban areas 

increased by 62%; they decreased by 4.8% in rural areas. Over the same time period, bicyclist 

fatalities in urban areas increased by 49%; they increased by 4.6% in rural areas. Despite a 

13.2% decrease in vehicle miles traveled (VMT) in 2020 during the COVID-19 pandemic 

(FHWA, 2021), pedestrian fatalities did not significantly increase from 2019 to 2020 and 

bicyclist fatalities increased 5% (NCSA, 2021).  

Transportation engineers, planners, policymakers, and advocates seek to increase walking and 

biking in service of public health and equity. Understanding how the amount of walking, biking, 

and driving affects safety is an issue that must be understood to develop effective programs, 

policies, and infrastructure. However, understanding this issue can be complicated by the amount 

and quality of data available in evaluating program implementation, changes in behavior, and 

safety outcomes.  

One effort to understand these relationships revolves around the concept of Safety in Numbers, 

which seeks to explain an individual person’s chance of avoiding negative consequences 

depending on the number of people who are also walking or biking. NHTSA undertook research 

to assess the existence and potential impact of the SIN effect. This research included a literature 

review (Kehoe et al., 2022); identification of programs designed to increase walking and/or 

biking; and a data-driven evaluation of any relationship between program implementation and 

SIN. 

Safety in Numbers: What Does the Literature Say? 

As part of the literature review, 250 sources were critically reviewed, including 93 domestic 

sources and 141 international sources. These sources span over 15 years and include older 

sources that are foundational to SIN. The review spanned various fields of study and areas of 

practice, including engineering, planning and land use, sociology, psychology, education, public 

health, enforcement, human factors, and others.  

Overall, the literature review found that the majority of the available literature affirms that there 

is a SIN effect for both bicyclists and pedestrians, supported by a non-linear relationship between 

pedestrian and bicyclist exposure and crash risk. The effect differs by mode, and bicyclists 

appear to have a stronger effect than pedestrians. What follows is a brief description of the SIN 

concept through a description of several key studies. More information can be found in the 

Literature Review report (Kehoe et al., 2022). 

Smeed (1949) completed groundbreaking research that later became known as Smeed’s Law, 

proposing that increases in traffic volumes led to a decrease in fatalities per vehicle. With 

Smeed’s research serving as a basis of his hypothesis, Jacobsen (2003) questioned whether the 

relationship between the number of pedestrians or bicyclists and motor vehicle traffic volumes 

was linear. He studied five data sets representing multiple countries to compare the amount of 

walking or bicycling and the injuries resulting from collisions with motor vehicles. He found that 
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as the number of people walking or bicycling increased, the relative risk of a motor vehicle and 

pedestrian or bicyclist crash decreased. Jacobsen calculated that at the population level, the 

number of motorists colliding with people walking or bicycling will increase at roughly 0.4 

power of the number of people walking or bicycling and coined the term “Safety in Numbers” to 

describe this effect. This means that if the number of people walking or bicycling doubled, the 

number of crashes between them and motor vehicles would increase by a factor of 20.41=1.33, or 

only 33%.  

The term “Safety in Numbers” began to take hold in the research community as various 

researchers investigated the concept, and an uptick in the number of studies related to the SIN 

theory began in 2009. In many cases, these studies referenced one or more SIN papers such as 

Jacobsen’s work, but they may or may not have included the term “Safety in Numbers” within 

the body of the paper. With this increased focus on the SIN theory, researchers began to critically 

review and even challenge the idea.  

Some of the most influential investigations into SIN were conducted by Elvik. His 2009 

literature review studied the non-linear relationship between exposure and risk to understand 

how a SIN effect could exist when vulnerable road users have a much higher risk of injury or 

death compared to motor vehicle drivers. He concluded that there is a non-linear relationship; 

however, he found that the SIN effect was only demonstrated when there was a large transfer of 

motorized trips to a non-motorized mode. He did note several concerns with the SIN effect, 

listed here.  

 Crashes involving vulnerable road users are poorly reported in official statistics.  

 The exact shape of the non-linear relationship for risk is unknown. It is possible that the 

SIN effect strengthens, weakens, or ceases to exist as a function of the number of 

vulnerable road users present.  

 Data regarding injuries between vulnerable roads users (crashes involving bicyclists with 

pedestrians) are largely nonexistent, so it is unclear how increasing the volume of 

vulnerable road users will affect safety amongst themselves.  

 The percentage of motorized trips transferred to a non-motorized mode required to make 

a SIN effect present may be unrealistic in many situations.  

Elvik (2013) reviewed common crash prediction models to better understand if these models can 

completely confirm the existence of a SIN effect. In this paper Elvik critically reviewed the 

model used in Jacobsen’s 2003 research that predicted the relative risk for a unit of walking or 

cycling. Elvik showed that there are inherent flaws with trying to provide a SIN effect using this 

model due to the mathematical relationships between the model’s variables. He focused on the 

variables for risk and exposure. In some cases, risk can be measured as number of crashes or 

injuries per kilometer walked or biked. Exposure can also be measured by number of kilometers 

walked or biked per resident.  

If risk and exposure are both measured in this fashion, there is an inherent mathematical 

relationship between the two – distance traveled. Elvik demonstrated this relationship using 

random numbers for motor vehicle volumes, pedestrian volumes, and number of crashes with 

realistic upper and lower limits based on a data set from Oslo, Norway.  
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The other crash prediction model Elvik (2013) discussed uses the number of crashes as the 

dependent variable and estimates the relationships between crashes and volumes using negative 

binomial regression. Elvik showed that this model is more appropriate for researching SIN, as it 

uses actual exposure data (e.g., counts) rather than proxy values and shared components, while 

also allowing for researchers to control for confounding variables. This model is discussed in 

greater detail in the Statistical Analysis section of this report. 

SIN can be complete or partial (Elvik, 2013). Recall that SIN does not predict a decrease in total 

crashes, but rather a smaller increase in crashes than a corresponding increase in road users. 

Complete SIN is said to occur when bicyclist/pedestrian crashes increase at a rate less than 

proportional to simultaneous increases in bicyclist/pedestrian and motor vehicle volumes. In 

contrast, partial SIN occurs when bicyclist/pedestrian crashes increase at a rate less than 

proportional to increases in bicyclist/pedestrian or motor vehicle volumes. 

To evaluate the research conducted thus far, Elvik and Bjørnskau (2017) conducted a systematic 

review and meta-analysis. The researchers compiled a list of 26 studies researching the 

relationship between pedestrian and bicyclist safety and volume to use as the basis of the meta-

analysis. The researchers further culled this list of studies to 15, as the remaining 11 had 

methodological shortcomings or were lacking details that prevented them from being included in 

the meta-analysis. Results indicated the existence of a clear SIN effect.  

While results of this meta-analysis support the existence of a SIN effect, Elvik (2017) discusses 

several challenges with understanding and applying the effect. One potential issue is the crash 

prediction model used most commonly in SIN analysis: the negative binomial regression. Elvik 

states that this model does not allow for turning points; it is possible that without anything else 

changing, negative safety implications could emerge if the percentage of vulnerable road users 

became too great, but these models have no way to depict this turning point given their format. 

Elvik’s research found that no study in his review controlled sufficiently for human behavior and 

for quality of infrastructure. He also pointed out that most of the studies were conducted using 

vulnerable road user crash data from official data sets and that these data sets greatly 

underrepresent minor crashes. Finally, Elvik’s research included papers published prior to 2016, 

and given the state of research at this time, he concluded that it is still not possible to determine 

if the SIN effect is a causal relationship or merely a statistical relationship.  

Building on the results of the systematic review, Elvik (2017) further explored the strength of the 

SIN effect by considering additional factors that, theoretically, could affect the strength of a SIN 

effect: characteristics of the pedestrians and bicyclists, and characteristics of the built 

environment, such as infrastructure availability and design. Interestingly, characteristics of the 

motor vehicle driver were not mentioned. Much like his previous meta-analysis, this study was a 

cross-sectional study that looked at results of other existing studies. Findings indicated that 

cross-sectional data show a tendency for the SIN effect to weaken as the number of pedestrians 

or bicyclists increases. Second, although this finding was not statistically significant, Elvik 

highlighted this weakening trend in the data and hypothesized that it may be due to the ratio of 

motor vehicles to bicyclists or pedestrians. Ultimately, he was unable to find a clear relationship 

between the strength of the effect and the ratio of the groups.   
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Objective of the Evaluation 

Following the literature review, the next phase of research was to examine whether programs to 

increase walking and biking can demonstrate a SIN effect. To investigate this, a scan of walking 

and biking programs across the United States was conducted to understand the purpose, content, 

and metrics associated with program implementation. Particular sites were sampled, and existing 

data were analyzed to investigate the effect of the program on walking and biking and any 

associated safety impacts that could provide support for SIN.  
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Methodology  

The evaluation methodology involved site selection, data acquisition, data preparation, and data 

analysis. Each of these is described in the following sections.  

Site Selection 

As part of the overall program scan, the research team identified 230 programs from all 50 States 

and Washington, DC. This also included several national-level programs. Of the 230 programs 

identified, 48% focused on bicyclists only, 15% focused on pedestrians only, and 37% focused 

on both bicyclists and pedestrians.  

A mix of program sponsors were identified including advocacy groups, local agencies, State 

agencies, Federal agencies, metropolitan planning organizations, nonprofits, universities, 

associations, employers, public schools, public health departments, and faith-based groups.  

Each program was classified by its messaging focus. These focus areas included: community, 

environment, health, money savings, planning, recreation, safety, and time savings. 

This information was compiled during 2019 and 2020. Criteria were established to select sites to 

work with in the evaluation phase of the project. A summary of the programs is included in 

Appendix A.  

What Is a Program? 

For the purposes of this project, a “program” clearly has an initiative directed 

toward the behavior and well-being of pedestrians and bicyclists; occurs on an 

ongoing or repetitive basis rather than just a one-time effort; potentially has data 

available regarding increasing the number of pedestrians and/or bicyclists and/or 

safety outcomes; and has program elements or activities that are either unique or 

can be duplicated in other communities. 

 
 

Site Selection Criteria 

In order to identify which of the 230 programs had the greatest potential for a SIN evaluation, the 

research team assessed information on two major topics: a) the effectiveness of local bicycling 

and walking promotion programs at increasing participation in these modes; and b) any potential 

linkages between changes in bicycling and walking rates in the localities, and pedestrian and 

bicyclist crash rates in the cities.  

The research team developed the following criteria for the assessment to screen candidate 

bicycle and pedestrian programs for further study using several criteria. 

 Walking and bicycling culture (supportive of walking and biking; availability of 

sidewalks, trails, bike paths) 

 Weather (temperate climate, conducive to walking and biking) 
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 Geographic diversity (range of landscapes) 

 Target audience (e.g., school children, adults, healthcare workers, older adults, corporate 

employees) 

 Scale (the research team determined that smaller scale programs may provide higher 

quality data and therefore were preferred – city or community versus an entire State) 

 Available program participation, crash, and volume data (e.g., outreach/media exposure 

data, community surveys, pedestrian and/or bicyclist counts, enforcement data, exposure 

data) 

Using the criteria listed above, the research team identified 15 locations as promising areas for 

further study of their pedestrian and/or bicycle education or encouragement programs. In this 

case promising meant that the area appeared to meet the criteria based on publicly available 

information, but this had not been confirmed by program officials. Appendix A: Preliminary 

Program Site List provides more details on the 15 initially selected locations and is organized as 

follows. 

 Statewide programs. 

 Local/regional programs run by advocacy groups or other non-governmental 

organizations, often in partnerships with the local/regional governments. 

 Local/regional government agencies that are known to be heavily involved in pedestrian 

and bicyclist safety.  

For the locations that have more than one education or encouragement program listed, the 

research team planned to evaluate how these programs work together as a whole to improve 

pedestrian and bicycle safety. For all other locations, the team used internet resources and 

worked through the State or local agencies to identify appropriate contacts within specific 

programs to make an inquiry to obtain data.  

The research team conducted outreach with the candidate program agencies to determine their 

interest in participating in the study and ability to provide relevant data. The research team held 

preliminary phone conversations with the programs identified in Table 1 to determine which of 

these programs have the type of data and information needed to conduct this project and identify 

which participants were willing to contribute and share the information with the research team 

for their program evaluation. 

During the initial screening call, the research team shared the intent of the research, outcomes of 

the literature review, and the list of program measures and possible data sources needed for the 

analysis. The program candidates provided available data samples to the research team for the 

initial review and determination for the final site selection. 

Selected Sites 

After the initial screening, the research team examined the data samples received from the 

potential participants, evaluated collecting information, and carefully eliminated candidates that 

were not able to meet the study criteria. It is important to mention that, generally, staff from most 
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agencies were very excited to participate in the study and provide all of the information that was 

available at the time of initial outreach. The enthusiasm of the staff from each of the programs 

was very encouraging, although, in many cases, the needed data were insufficient or unavailable 

for participation in the study.  

The collection of program participation data was one of the most challenging steps of this 

research study. Some of these educational programs are run with limited staff and volunteers and 

participation data collection is not a priority for many. Some do not have the capacity and/or 

equipment to record attendance or registration data. Some programs are new and while they had 

some participation data, the collection period was often not sufficient to be included in the 

analysis. The research team explored the possibility of using website analytics and social media 

metrics for the selected programs but was not successful in obtaining those. 

The initial larger list was reduced to five cities. Upon closer review of data samples, the 

following three sites/programs were selected for the analysis.  

 Fort Collins, Colorado – Safe Routes to School, Open Streets, the Bicycle Ambassador 

Program, and Bike to Work Day  

 Philadelphia, Pennsylvania – Indego Bikeshare Initiative 

 Anchorage, Alaska – Bikeology 

Fort Collins, Colorado 

SRTS is a nationwide program to increase the number of students safely walking and biking to 

school. The target audience is school-aged children. The main goal of the SRTS program in Fort 

Collins is to achieve 50% of local K-12 students biking and walking to school safely on a regular 

basis. This program aims to shift children’s travel from their parent’s car to walking and biking 

to school through education, training, and encouragement activities. Students and their families 

are reached through bike clubs, bike rodeos, and other SRTS initiatives. While the SRTS 

program’s target audience includes K-12 students, the program encourages whole family 

participation.  

The OS initiative creates temporary routes for bicycling, walking, and other active modes of 

transportation. These streets feature reduced car traffic, slower and safer traffic speeds, and 

additional traffic calming measures. The initiative creates safer places to exercise, to be mobile, 

and to maintain social connections with neighbors and friends. This program targets participants 

of all ages.  

The BAP in Fort Collins consists of a group of community members and, through community 

events, aims to educate all drivers on the best and safest ways to share the road with people on 

bicycles. The target audience includes both bicyclists and drivers. BAP events include classes, 

group rides, webinars, and hands-on training in schools. 

BTWD is a semi-annual event designed to encourage city residents to commute by bicycle. 

Breakfast, water, and promotional materials (T-shirts, lanyards, etc.) are provided to participants. 

This program primarily targets the adult, working population.  
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Philadelphia, Pennsylvania 

One program was identified in Philadelphia, the Indego Bikeshare Initiative. The city launched 

Indego in 2015, offering affordable access to bicycles for city residents and visitors. The city’s 

Office of Transportation, Infrastructure, and Sustainability owns the bicycles and docking 

stations and manages the program. In addition to the physical bicycles and docking stations, the 

program includes education and encouragement elements such as neighborhood ride guides, 

bicycle riding classes, bicycle safety tips and videos, and ridership rewards. 

Anchorage, Alaska 

Anchorage’s Bikelogy program provides bicycles to students to teach them bicycle safety skills. 

In order to develop this program, the Alaska Injury Prevention Center received funding from 

Alaska’s SRTS program to put together a bike fleet for the Anchorage School District. In 

addition, to house and transport the bikes, the school district was able to obtain a trailer to allow 

teaching bicycle safety at different locations. Classroom and on-the-bike instruction are being 

taught using the Bikeology curriculum designed by the American Alliance for Health, Physical 

Education, Recreation, and Dance with funding from NHTSA. 

Data Acquisition 

This section describes the data acquired for analysis, as well as the necessary data preparation 

steps and statistical models employed to evaluate program effectiveness and investigate the SIN 

effect. Table 1 provides a summary. 

Building on the sample data sets requested earlier in the site selection process, the research team 

worked with each of the agencies to collect full data sets needed for SIN analysis. In each 

instance, a person from the research team reviewed the data for personally identifiable 

information before sharing it with the analysts. In some instances, the program agency may not 

have had complete data sets available, and so the project team identified other sources for the 

data. The following sections describe each of the data sets that were used.  
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Table 1. Summary of data acquired and necessary preparation 

Site Program data Crash data Traffic volume data Data preparation 

Fort Collins Safe Routes to School (adults 

reached and trained, students 

reached and educated) 

Open Streets (participants) 

Bicycle Ambassador Program 

(event attendees) 

Bike To Work Day 

(participants) 

Individual crash 

records, provided 

by the Fort Collins 

Traffic Operations 

department 

Short-term counts, 

made available to the 

public by the City of 

Fort Collins 

Converting short-

term counts to 

AAD volumes 

Determining an 

appropriate crash 

zone size 

Philadelphia Indego Bikeshare (city-wide 

stations and trips, localized trip 

origins) 

Individual crash 

records, made 

available to the 

public by the 

Pennsylvania DOT  

Average Annual 

Daily (AAD) 

volumes, collected 

and estimated by the 

Delaware Valley 

Regional Planning 

Commission 

Connecting and 

interpolating data 

from single-mode 

counters 

Determining an 

appropriate crash 

zone size 

Anchorage Bikeology (city-wide education 

program that provided bicycles 

and training to local students)  

Individual crash 

records, made 

available to the 

public by the 

Alaska DOT  

AAD volumes, made 

available to the 

public by the Alaska 

DOT 

Geocoding crash 

and volume 

locations  

Connecting and 

interpolating data 

from single-mode 

counters 

Determining an 

appropriate crash 

zone size 
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Program Data 

Each participating program’s data came from the city’s staff and/or information posted on the 

program website. The summary description and events with evaluation activities for each 

program selected to participate in this study is provided in Table 2. 

Table 2. Summary of programs and metrics analyzed 

Site Program Name Metrics 

Fort Collins Safe Routes to School   Students reached 

Students educated 

Adults reached 

Adults trained 

 Open Streets  Participants 

 The Bicycle Ambassador Program  Attendees 

 Bike to Work Day  Participants 

Philadelphia Indego Bikeshare  City-wide trips 

City-wide stations 

Localized trip origins 

Anchorage None None 

Fort Collins, Colorado 

Fort Collins provided a total of seven metrics associated with four distinct programs: Safe Routes 

to School, Open Streets, the Bicycle Ambassador Program, and Bike to Work Day. The 

following are a description of those metrics. 

 Four SRTS program metrics: 1) students reached, 2) students educated, 3) adults reached, 

and 4) adults trained. SRTS defines students reached as the number of students exposed 

to the program, distinct from those who received education by participating in a class. 

Adults reached are similarly the number of adults exposed to the program; adults trained 

refers to the number of adult volunteers trained in leading groups of children to schools, 

serving as crossing guards, and other duties that support the SRTS mission.  

 The OS program metric was event attendance. 

 The BAP metric was also measured by attendance at each of the community events. 

 The BTWD program metric was attendance on the day of the event. 

Philadelphia, Pennsylvania 

Individual metrics for each of the education and encouragement efforts – such as the bicycle 

riding classes – were not identified. Instead, as these efforts all likely contribute to increased 

ridership, Indego ridership was the metric selected. Publicly available trip summary data were 

used to calculate the program’s total annual number of trips and docking stations. The number of 

trips originating from each station was also used as a more localized measure of the program’s 

reach. 

Anchorage, Alaska 

While this program provided robust opportunities for students to learn how to bike; 

unfortunately, the research team was not able to obtain any specific program metrics to use in the 

analysis.  
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Crash Data 

Many States maintain public-facing crash databases to enable research and promote safety. Crash 

data for Philadelphia and Anchorage were extracted from respective State DOTs. Fort Collins 

crash data were provided by the city’s Traffic Operations department. All crash data used in this 

analysis were sourced from each site’s respective State DOT. Records described the location, 

date, and severity of all crashes involving at least one bicyclist or pedestrian. Single-vehicle 

bicycle and pedestrian crashes (i.e., those crashes with a single bicyclist or a single pedestrian 

and not involving motorized vehicles) were not excluded as they may reflect bicyclists’ and 

pedestrians’ attempts to avoid contact with motor vehicles. Fort Collins and Philadelphia records 

used geographical coordinates; Anchorage crash data were identified by intersecting roadways 

and geocoded using the method described in the Geocoding Crash and Volume Locations 

section. 

Traffic Volume Data 

Traffic volume data were provided in very different formats. Fort Collins volume data were 

extracted from publicly available turning movement reports. These short-term counts were 

converted to AAD volumes prior to analysis (see Data Preparation: Converting Short-Term 

Counts to AAD Volumes for details). Philadelphia volume data were extracted from publicly 

available counts collected by the Delaware Valley Regional Planning Commission (DVRPC). 

DVRPC conducted counts using pneumatic tubes and converted them to AAD volumes. 

However, each count reflected individual road user groups (e.g., a count of only bicyclists or 

only pedestrians), necessitating geographical matching and temporal interpolation to be made 

suitable for analysis (see Data Preparation: Connecting and Interpolating Data From Single-

Mode Counters for details). Anchorage volume data were in a similar format and required an 

additional step to convert intersecting roadways into geographical coordinates (see Data 

Preparation: Geocoding Crash and Volume Locations for details). 

Infrastructure Data 

Data on the presence of 17 pedestrian/bicyclist facilities were coded for the city of Philadelphia 

to support an ad-hoc investigation into the role of infrastructure. For each observation, the 

research team used Google Streetview to determine if these facilities were present for each year 

represented in the data. Google Streetview provides three-dimensional photos along many of the 

country’s roadways and allows users to select among photography from various years. 

Photography in cities is updated more often than rural areas. For Philadelphia, direct 

observations were made the majority of the time; when photography was unavailable for a 

particular year, the team relied on context to infer the presence of facilities. For example, if a 

bike lane is visible in years 2015 and 2017, it was assumed to also be present in 2016. More 

ambiguous cases were left uncoded. For example, if 2018 photos showed a bike line but 2015 

photos did not, the first year with the bike lane is unclear, thus its presence would not be coded 

and the 2016 and 2017 data points would not be included in statistical models.  
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Data Preparation 

The statistical models employed in this analysis impose certain spatial and temporal 

requirements on the input data. Namely, one complete observation has at least two volumes 

(Average Annual Daily Motor Vehicle and Average Annual Daily Bicyclist or Average Annual 

Daily Pedestrian), crashes, and program metrics for one location for one year. As the data 

gathered for this analysis were not originally recorded with this in mind, each site underwent a 

data preparation phase, tailored to the format and content of the available data. For Fort Collins, 

one-hour turning movement reports had to be converted to AAD volumes. Counts in 

Philadelphia were provided as AAD volumes, but each count focused on just one road user group 

and thus had to be matched geographically to produce a full observation. All data from 

Anchorage (both volumes and crashes) were identified by intersecting roadways and thus had to 

be geocoded to geospatial coordinates. Finally, an appropriate crash radius had to be determined 

for each site.  

Converting Short-Term Counts to AAD Volumes 

Fort Collins conducts turning movement studies and makes the reports available to the public. 

These reports provide the results of counts of vehicles, bicyclists, and pedestrians at 

intersections. Each study consists of three 1-hour counts: in the morning (7:30 a.m.– 8:30 am), at 

midday (12 p.m. – 1 p.m.) and in the evening (4:30 p.m. – 5:30 p.m.). For this study, the morning 

counts were used, as they were thought to be the most consistent in terms of volume over time, 

as the morning data collection period coincides with the typical morning rush hour. 

Figures 1 and 2 provide examples of one turning movement report from which volume data were 

extracted. Figure 1 provides the number of motor vehicles observed on each leg of the 

intersection during the morning count, while Figure 2 provides the number of bicyclists and 

pedestrians observed on each leg of the same intersection during the same time. This particular 

report indicates that 2,320 motor vehicles (Figure 1), 167 bicyclists, and 66 pedestrians  

(Figure 2) passed through this intersection during the peak one-hour AM period.  

 

Figure 1. Example turning movement report: motor vehicles 
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Figure 2. Example turning movement report: bicyclists and pedestrians 

Short-term counts must be converted to AAD volumes to conform with the statistical model 

described in the Statistical Analysis section. A method was developed to leverage data from 

continuous counters to convert one-hour counts to AAD volumes. The method essentially 

determines the relationship between short-term counts and annual totals from continuous 

counters and applies a factor to the counts made during the turning movement studies. It is 

similar to the methodology outlined in section 4.5 of the FHWA’s Traffic Monitoring Guide 

(FHWA, 2016). 

Step 1: Acquire Continuous Count Data 

Continuous count data for at least one year are necessary for converting short-term counts to 

AAD volumes due to the multiple layers of seasonality. Road user volumes have been shown 

(confirmed below) to vary by time of day, day of week, month, and other factors.  

Ideally, continuous counters would be located in the same community as the short-term studies 

were conducted. The research team acquired bicyclist and pedestrian counts from five 

continuous counting stations in Fort Collins, but these were found to be problematic in several 

ways. Two of the counters failed to differentiate between pedestrians and bicyclists, and two 

more only counted bicyclists. The fifth counted bicyclists and pedestrians separately, but was 

located on a trail, and was thus considered potentially nonrepresentative of the number of 

bicyclists exposed to motor vehicles. Furthermore, none of these stations counted motor vehicles; 

if these counters were used for bicyclist and pedestrian volumes, counts from elsewhere would 

be required for motor vehicles, and the use of different data sources could introduce bias or error.  
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Data from counters in Denver were used in place of counters from Fort Collins. Denver is 

approximately 60 miles south of Fort Collins. Although these cities differ in terms of size, 

density, population demographics, and other factors, they experience remarkably similar 

climates. Table 3 compares the monthly average temperatures, precipitation, and snowfall in the 

two cities. These three weather phenomena affect the choice to walk or bicycle. The similarity of 

Denver’s climate to that of Fort Collins makes Denver a suitable proxy for converting short-term 

counts to AAD volumes. 

Table 3. Comparison of climates in Fort Collins and Denver 

Metric Location Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Average high (°F) Fort Collins 44 47 55 62 71 80 87 84 76 64 51 43 

 Denver 44 46 54 61 71 81 88 86 77 65 52 43 

Average low (°F) Fort Collins 18 21 28 35 44 53 58 57 47 36 26 18 

 Denver 17 20 26 34 44 53 59 57 47 36 25 17 

Average precipitation (inches) Fort Collins 0.40 0.40 1.59 2.06 2.43 2.17 1.71 1.60 1.33 1.15 0.76 0.50 

 Denver 0.47 0.47 1.25 1.74 2.30 1.69 2.05 2.06 1.06 1.08 0.82 0.59 

Average snowfall (inches) Fort Collins 8 7 13 6 1 0 0 0 1 4 9 8 

 Denver 7 6 11 7 1 0 0 0 1 4 9 9 

Source: US Climate Data, 1981-2010. 

Three continuous counting stations in Denver were identified. Each counter measured one road 

user type: motor vehicles (MVs) or bicyclists (Bikes) or pedestrians (Peds). Hourly aggregated 

counts for 2017 were acquired from the Colorado DOT’s Online Transportation Information 

System. Figure 3 plots raw hourly counts for each road user group for all of 2017 while Figure 4 

provides a closer look at one week beginning on Saturday, July 1, 2017. These plots highlight 

outliers and missing data patterns. The proceeding steps address these issues. 
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Figure 3. Raw hourly counts from Denver’s continuous counting stations, 2017 

Figure 4. Raw hourly counts from Denver’s continuous counting stations, July 1-8 
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Step 2: Adjust Outliers 

A visual inspection of Figure 4 reveals the presence of outliers, particularly with bicyclists. One 

outlier occurred during the 9:00 a.m. hour of July 4, when 124 bicyclists were observed, 

compared to 43 exactly one week earlier. This was likely due to a holiday bike ride, but the 

source or motivation underlying many outliers is largely unknown and unknowable. Adjusting 

such outliers will lead to more stable estimates in Step 3 and thus more reliable factors to convert 

short-term counts to AAD volumes.  

Outliers were adjusted using a method known as seasonal and trend decomposition using locally 

weighted least squares regression. This method essentially identifies the trend and seasonal 

components of a time series. The remainder (original data, minus trend, minus seasonal 

components) is then examined to identify outliers, defined as 𝑟𝑡 < 𝑄1 − 3𝐼𝑄𝑅 or 𝑟𝑡 > 𝑄3 +
3𝐼𝑄𝑅 where 𝑟𝑡 represents the remainder at time 𝑡, 𝑄1 and 𝑄3 represent the first and third 

quartiles (25th and 75th percentiles) of the remainder, respectively, and 𝐼𝑄𝑅 = 𝑄3 − 𝑄1. Outliers 

are then replaced via linear interpolation applied to the seasonally adjusted data (Hyndman & 

Khandakar, 2008). Figure 5 shows the observed (in black) and adjusted (blue) counts to illustrate 

the effects of this process; the two lines overlap at all points shown except for several peak hours 

on July 4, where several bicyclist counts were deemed outliers and adjusted downward. 

Figure 5. Results of outlier adjustment 
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Step 3: Impute Missing Data 

Converting short-term counts to AAD volumes requires an annual total for each road user type. 

Missing counts bias the annual totals downward. The goal of this step is to accurately estimate 

missing counts. 

The data acquired in Step 1 exhibits two missing data patterns: motor vehicle counts are missing 

in regularly spaced (two-week) intervals, perhaps to minimize costs; while pedestrian counts are 

missing from mid-July to mid-September, perhaps due to a hardware malfunction.  

Generalized linear regressions were used to estimate missing motor vehicle and pedestrian 

volumes, separately. Bicyclist volumes were not modelled because there were no missing data 

points. The two models were similar in many ways. Both used Poisson response distributions, as 

is appropriate when analyzing count data. Both used second-degree polynomials to represent the 

month (𝑚𝑜𝑛𝑡ℎ,𝑚𝑜𝑛𝑡ℎ2 where January = 1, February = 2, etc.). Using categorical terms would 

enable a simpler calculation of monthly volume factors, but the pedestrian data were missing the 

entire month of August, necessitating a numerical stand-in. Further, the monthly trend in non-

motorized volumes is known to be parabolic in shape, peaking in the warmer summer months, 

hence the second degree term. Both regressions used categorical terms for hour (allowing each 

hour to exhibit a mean independent of the others and irrespective of a linear trend), a dummy 

variable to indicate the weekend (Saturday and Sunday), and included an interaction term for 

weekend and hour.  

The pedestrian model also included a term for bicyclist volume. Counts for the two modes 

exhibit a Spearman rank correlation of 0.80, thus the inclusion of bicyclist volumes on a model 

of pedestrian volumes was considered appropriate. Indeed, the model produces a positive and 

statistically significant relationship. Figure 6 shows observed (in black) and imputed (blue) 

counts to illustrate the high degree of accuracy produced by this process. There were zero 

missing observations for bicyclists. Only missing values were replaced with imputed ones. 

Figure 7 extends the view to the entire month of July to illustrate the values imputed during 

longer stretches of missing data. 

Figure 6. Results of missing data imputation 
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Figure 7. Extended results of missing data imputation 

Step 4: Calculate Factors 

The goal of this process is to develop factors to convert short-term counts to AAD volumes. 

Having completed Step 3, the hourly continuous counts have been adjusted for outliers and rid of 

missing data via imputation. Now factors can be developed to relate the short-term observations 

(in the continuous data) to AAD volumes (also in the continuous data). Thirty-six factors were 

calculated, one for each month for each of three road user groups. Mathematically, these factors 

can be expressed as: 

𝐹𝑢,𝑚 =
𝐴𝐴𝐷𝑢
𝑠𝑢,𝑚

 

where 𝐹𝑢,𝑚 represents the factor for road user group 𝑢 during month 𝑚, 𝐴𝐴𝐷𝑢 represents the 

AAD volume for each road user group (i.e., AADB, AADM, AADP) and 𝑠𝑢,𝑚 represents the 

short-term count for road user group 𝑢 during month 𝑚. AAD volume is calculated simply as the 

sum of all road users of a given group in a single year divided by 365. For the counters in Denver 

during 2017, AADB = 255, AADM = 235,755, and AADP = 148. The relevant short-term counts 

are those that coincide with the turning movement studies in Fort Collins, all of which took place 

between 7:30 and 8:30 a.m. on weekdays.1 This reduces the relevant counts to approximately 20 

(5 weekdays in each of 4 weeks) observations per month per road user group, which were then 

averaged. Table 4 shows the resulting factors for each month and road user group.   

                                                 
1 Note that the turning movement reports cover the period 7:30-8:30 a.m. while the continuous counts are given for 

the entire 7:00 and 8:00 hour. To overcome this scale difference, the 7:00 and 8:00 hour counts were averaged. 
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Table 4. Calculated factors to convert short-term counts to AAD volumes 

Month Bicyclists 
Motor 

 Vehicles 
Pedestrians 

Jan 150.3 18.0 32.1 

Feb 71.0 19.2 21.9 

Mar 56.4 18.4 16.5 

Apr 41.5 19.2 12.4 

May 25.4 19.3 12.1 

Jun 10.1 17.5 8.8 

Jul 7.7 17.7 6.6 

Aug 12.4 18.2 11.1 

Sep 16.6 18.6 9.9 

Oct 36.1 18.4 18.8 

Nov 44.1 17.9 22.3 

Dec 94.6 17.6 31.0 

 

Note how the factors are nearly constant for motor vehicles, but much higher during winter 

months relative to summer months for bicyclists and pedestrians. This reflects the climate-driven 

seasonality of non-motorized traffic and the result of sampling: if bicyclists (or any group of road 

users) are less active during a certain time of year, then the probability of observing them during 

a one-hour count is also lower. Some constant value of AADB exists for every day of the year, 

but the one-hour counts must be adjusted differently in each month to bring the count to AADB.  

Turning movement study counts were converted to AAD volumes by multiplying the count by 

the appropriate factor. For example, the turning movement study conducted in January 2011 at 

the intersection of Boardwalk Drive and Harmony Road (in Fort Collins, Colorado) reported 7 

bicyclists, 2,790 motor vehicles, and 7 pedestrians. Therefore:  

𝐴𝐴𝐷𝐵̂ = 150.3 × 7 = 1,052 
𝐴𝐴𝐷𝑇̂ = 18.0 × 2,790 = 50,220 
𝐴𝐴𝐷𝑃̂ = 32.1 × 7 = 225 
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Estimated AAD volumes are mapped in Figure 8.  

Figure 8. Maps of estimated AAD volumes in Fort Collins, Colorado 

Note: All map figures were developed using Leaflet | Map street data © OpenStreetMap contributors, CC-BY-SA, Tiles ©Esri – 

Esri, DeLorme, NAVTEQ 

Connecting and Interpolating Data From Single-Mode Counters 

Philadelphia and Anchorage provided single-mode count data: locations where just one mode of 

transportation was measured. SIN models require co-located counts. This section describes how 

the single-mode counters in Philadelphia were connected to form one observation with AADM 

and either AADB or AADP per year and interpolated across missing years. The same 

methodology was applied to Anchorage.  

Philadelphia provided single-mode count data from 5,156 unique locations between 2005 and 

2019. These counts were conducted by various organizations (Pennsylvania DOT, private 

consultants, volunteers) and consolidated into a central database managed by the DVRPC, the 

Federally designated MPO for the city. DVRPC converts these counts to AAD volumes using an 

unknown methodology.  

DVRPC count data included highly localized GPS coordinates (in decimal form, to the fifth 

decimal place). Figure 9 provides several examples of nearby locations; the six points within the 

circle must be consolidated. Without a consolidation step, none of the provided counts would 

appear to be co-located, as is required by the model described in a previous section. Locations 

within 30m of one another were consolidated into one location. In doing so, one-way counts on 

two-way roads were summed to yield the total AAD volume observed at a given location.  

  

https://leafletjs.com/
https://www.openstreetmap.org/copyright
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Figure 9. Map of selected count locations 

The above process yields one data point for each count, but counts are still single-modal. That is, 

the six points highlighted in Figure 9 have been reduced to three and must be further reduced to 

one to be included in the statistical model previously described. However, the timing of many 

counts presents a problem; counts of different modes have been co-located but were conducted in 

different years. To mitigate the timing issue, annual AAD volumes were linearly interpolated 

between years. For example, if AADP at one location was 70 in the year 2010, missing for 2011, 

and 90 in the year 2012, the 2011 value would be interpolated as 80. Note that AAD volumes 

were not extrapolated, only interpolated. The interpolation step makes more complete 

observations possible, but it does not extend trends beyond existing observation windows.  

The consolidated, interpolated, single-modal AAD volumes were then connected using two 

criteria: the distance between the two locations, with matches being no more than 300 m apart;2 

and whether they were located along the same road. Specifically, locations were matched to 

minimize the distance between them, giving preference to locations along the same travel 

corridor, as long as they were still within 300 m of one another. Matched pairs retained the 

location of the non-motorized AAD volume for crash counting purposes.  

To mitigate the error introduced by the matching process, statistical weights were calculated to 

give more weight to closer matches. Weights were calculated as 𝑤𝑖 = 1/ log(𝑑 + 3) where 𝑤𝑖 

represents the weight for observation 𝑖, 𝑑 is the distance between the matched locations in 

meters, and 3 is a correction factor to lower the maximum weight to 0.9 for observations where 

𝑑 = 0.  

Geographic matches were then matched by year. The overlapping years of data combine to form 

complete observations. Note that some statistical models require volumes for all three modes, 

while others require only two (AADM+AADB or AADM+AADP).  

                                                 
2 A match radius of 500 m was used for Anchorage due to its greater geographical dispersion.  
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Figure 10 illustrates the methodology. Point A is a pedestrian count location to be matched to a 

motor vehicle count location, represented by points B and C. The circle surrounding point A has 

a radius of 300m. Points B and C are both within the 300 m-radius. Point B is closer to Point A 

than is Point C, but Points A and C are on the same road. Thus, the pedestrian count location 

(Point A) matches to the motor vehicle count location labelled Point C. If Point A has AADP for 

2005-2016 and Point C has AADM for 2009-2018, then complete observations (AADM+AADP) 

would exist for 2009-2016.  

Figure 10. Illustration of count location connection methodology 

Figure 11 provides examples of AADM+AADB matches. Note that a small amount of random 

noise has been added to visually separate nearly overlapping points. All points shown belong to a 

pair. Of the 803 AADB locations, 681 (85%) were matched to AADM locations; of the 305 

AADP locations, 225 (74%) were matched to AADM locations. 

Figure 11. Examples of AADM+AADB matches  
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Geocoding Crash and Volume Locations  

Geocoding is the process of converting descriptions of locations into geographical coordinates 

(longitude and latitude). Both crash and volume data from Anchorage were geographically 

identified by intersecting roadways (e.g., Abbott Road and Golovin Street). Other sites provided 

geographical coordinates. These coordinates are important for counting crashes that occurred 

near volume count locations.  

Geocoding was accomplished using googleway (Cooley, 2020). Googleway is an add-on for the 

R language for statistical computing (R Core Team, 2019). It uses an application programming 

interface (API) to pass intersecting street names to Google Maps, which then returns the desired 

coordinates. Figure 12 provides examples of the resulting geocoded crashes. Note that a small 

amount of random noise has been added to visually separate overlapping points. 

Figure 12. Examples of geocoded crashes in Anchorage 

Determining an Appropriate Crash Zone Size  

Analyses of the SIN effect and outreach programs require data points with various volumes as 

well as relevant crashes (those involving bicyclists or pedestrians). However, count locations are 

very small: on one-way roads they depend on road users to cross a two-dimensional line and 

counts at intersections require road users to pass through the intersection. Crashes are unlikely to 

occur within these bounds, but rather in the surrounding areas. Determinations of crash zone 

radius are inconsistent and vary by location.  

Wang et al. (2008) conducted a nationwide survey to review how police officers, crash records 

technicians, and State safety engineers identify intersection crashes. Although the intent here is 

to identify an appropriate area in which to associate crashes to volume count locations, this 

guidance was considered. Authors report that Alaska uses a default radius of 61.0 m (200 ft) 

while Colorado uses 76.2 m (250 ft) and Pennsylvania has no default, adding that Colorado’s 

radius “represents one-half of a typical urban block, which might help explain why 250 ft is 
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commonly used” (p. 87). Crash zones with radii of 76.2 m (250 ft) were used for Fort Collins 

and Philadelphia. In the case of Anchorage, however, 76.2 m radii omitted most crashes; 

ultimately 250 m-radius zones were used to account for the greater degree of geographical 

dispersion. Figure 13 serves as a scale reference for the bicyclist crash zones used in the analysis 

of Fort Collins. The map represents the boundaries of 76.2 m-radius crash zones with blue lines 

and all crashes with red dots.  

Figure 13. Examples of bicyclist crash zones in Fort Collins 

Statistical Analysis 

This program evaluation follows an extensive literature review documenting the evolution of the 

analytical methods used to quantify SIN. The evaluation seeks to quantify a SIN effect as well as 

any effects on bicyclist and pedestrian volumes attributable to local program accomplishments. 

As the data are focused on local programs and their available data, random assignment was not 

possible. Rather, pre-post comparisons using archival data sources were used to look for 

differences and whether the data fit the mathematical definition of SIN. No claims are made 

about the generalizability of the results to other programs or localities.   

Elvik’s (2013) research identified flaws in prior methodologies and proposed the model used 

here to both quantify SIN and examine program effects. The SIN model can be expressed as: 

log(𝐶𝐵) = 𝛽0 + 𝛽1 log(𝐴𝐴𝐷𝐵) + 𝛽2 log(𝐴𝐴𝐷𝑇) + 𝛽3(𝐴𝐴𝐷𝐵 × 𝐴𝐴𝐷𝑇) + ∑(𝛽𝑖𝑋𝑖) (1) 

log(𝐶𝑃) = 𝛽0 + 𝛽1 log(𝐴𝐴𝐷𝑃) + 𝛽2 log(𝐴𝐴𝐷𝑇) + 𝛽3(𝐴𝐴𝐷𝑃 × 𝐴𝐴𝐷𝑇) + ∑(𝛽𝑖𝑋𝑖) (2) 

where log(… ) denotes a logarithm, 𝐶𝐵 and 𝐶𝑃 represent the number of crashes involving 

bicyclists and pedestrians, respectively; AADB, AADP and AADM represent the annual average 

daily volume of bicyclists, pedestrians, and (motorized) traffic, respectively; 𝑋𝑖 represent other 

known factors that may influence safety; and all 𝛽s are coefficients estimated via negative 

binomial regression. The non-log-transformed AAD volume interaction terms (𝐴𝐴𝐷𝐵 × 𝐴𝐴𝐷𝑇) 
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and (𝐴𝐴𝐷𝑃 × 𝐴𝐴𝐷𝑇) were found by Elvik, Sørensen, and Nævestad (2013) to improve the 

model fit and were thus included in this analysis. 

Two crash metrics were used in analysis: the total number of crashes involving each road user 

group, and a severity-adjusted total. The former treats crashes of all severities equally, while the 

latter assigns values of 1.0, 0.8, 0.6, 0.4 and 0.2 to fatal, incapacitating, non-incapacitating, 

possible injury and property-damage-only crashes, respectively. 

By using the log-transformed AAD volumes, coefficients 𝛽1 and 𝛽2 yield elasticities, or the 

percentage change in the number of accidents associated with a 1% increase in each AAD 

volume. For example, if Equation (1) produces 𝛽1 = 0.55, one would expect a 0.55% increase in 

bicyclist crashes if AADB increases by 1%.  

Values for 𝛽1 and 𝛽2 determine the presence of SIN. Both coefficients are considered 

simultaneously because the two modes are often correlated. If they sum to exactly 1.0, then 

bicyclist/pedestrian risk remains constant amid increases in both bicyclist/pedestrian and motor 

vehicle volumes. A sum greater than 1.0 indicates a hazard in numbers and a sum less than 1.0 

indicates SIN. If the sum exceeds 1.0 while either coefficient is less than 1.0 the data are said to 

exhibit a partial SIN, where SIN occurs if only one mode’s volume increases (Elvik, 2013). 

Equations (1) and (2) were adapted to model program effects by changing the roles of some 

variables and adding program metrics (𝑃𝑅𝑂𝐺) as independent variables:  

log(𝐴𝐴𝐷𝐵) = 𝛽0 + 𝛽1 log(𝐴𝐴𝐷𝑃) + 𝛽2 log(𝐴𝐴𝐷𝑇) + 𝛽3𝐶𝐵 + 𝛽4𝐶𝑃 + 𝛽5 log(𝑃𝑅𝑂𝐺) (3) 

log(𝐴𝐴𝐷𝑃) = 𝛽0 + 𝛽1 log(𝐴𝐴𝐷𝐵) + 𝛽2 log(𝐴𝐴𝐷𝑇) + 𝛽3𝐶𝐵 + 𝛽4𝐶𝑃 + 𝛽5 log(𝑃𝑅𝑂𝐺) (4) 

These equations include terms for the number of crashes involving bicyclists and pedestrians (𝐶𝐵 

and 𝐶𝑃 respectively) as they were believed to potentially affect bicyclist and pedestrian volumes 

as well. All variables are expressed as annual quantities.  
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Results 

Several variations of the models described in the Statistical Analysis section were fit to available 

data to investigate the effects of outreach programs and quantify SIN. Poisson, negative 

binomial, and zero-inflated models were estimated when appropriate, and compared to identify 

the ideal models for each site. Initial models included all available variables and were then 

narrowed down using a stepwise selection process. All analysis and data manipulation were 

conducted using the R language for statistical computing (R Core Team, 2019) version 3.6.1. 

Various functions included in the MASS package were employed for modeling (Venables & 

Ripley, 2002). 

Fort Collins, Colorado 

Four programs in Fort Collins were examined for their effects on bicyclist and pedestrian 

volumes: Safe Routes to School, Open Streets, the Bicycle Ambassador Program, and Bike to 

Work Day. Seven program metrics were derived from various data sources, described below. 

Programs were assumed to be non-existent beyond the data provided, and any associated metrics 

were given a value of zero for such times. 

Figure 14 shows the metrics related to the Safe Routes to School program in Fort Collins. Note 

that the number of students reached was highly correlated with the number of students educated 

(Pearson correlation of 0.95) and was thus excluded from further analysis.  

Figure 14. Program metrics, Safe Routes to School, Fort Collins 
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Figure 15 shows annual participants in the Open Streets events in Fort Collins. 

Figure 15. Program metrics, Open Streets participants, Fort Collins 

Figure 16 shows the total number of Bicycle Ambassador Program event attendees in Fort 

Collins. The BAP holds many kinds of events targeted toward different audiences. Bicycle 

maintenance classes and rides target bicyclists, while some educational classes target drivers. 

Other events such as board meetings and webinars target the general public. Figure 16 

distinguishes between target audiences, but the total annual attendance was used in analysis.  

Figure 16. Program metrics, Bicycle Ambassador Program event attendees, Fort Collins 

Figure 17 shows the annual number of participants in Bike to Work Day in Fort Collins, in both 

summer and winter. Participation in both seasons exhibits an upward trend. Only the summer 

participation was used in analysis as it was believed to be more representative of program 

attendance and including both seasons could double-count bicyclists who participated in both 

seasons.  
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Figure 17. Program metrics, Bike to Work Day participants, Fort Collins 

All volumes for Fort Collins were extracted from publicly available turning movement study 

reports (City of Fort Collins, 2020) and converted to annual AAD volumes using the method 

described in Data Preparation: Converting Short-Term Counts to AAD Volumes. Figure 18 

provides histograms of AAD volumes for each road user group. Note that these histograms 

include all years and locations for which data were available. 

Figure 18. Histogram of AAD volumes by road user group, Fort Collins 

Crash data for Fort Collins were provided by the city’s Traffic Operations department. Figure 19 

shows annual crashes by severity and the non-motorized road user group. Although 2017 appears 

to be an incomplete year, one crash record is dated December 5, 2017, suggesting completeness.  
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Figure 19. Annual crashes by severity and affected non-motorized road user group, Fort Collins 

Program Effectiveness  

Program impacts on bicyclist and pedestrian volumes were evaluated using the models described 

in the Statistical Analysis section.  

Table 5 provides summary statistics for all variables included in initial models of program 

effectiveness. The analysis data set consisted of 571 observations between 2009 and 2017, with 

average AADB=786, AADM=36,894, and AADP=277. The numbers of crashes within each 

crash zone ranged from 0 to 4 for pedestrians (mean=0.1) and 0 to 8 for bicyclists (mean=0.5).  

Table 5. Summary statistics, Fort Collins 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

AADB 571 786.3 1,092.6 10 211.4 859.2 10,220 

AADM 571 36,893.7 18,829.2 840.0 24,536.4 46,419.5 107,675.4 

AADP 571 277.0 549.1 6.6 44.6 256.4 6,933.6 

Ped. Crashes (sev.-adj.) 571 0.1 0.2 0 0 0 2 

Ped. Crashes 571 0.1 0.4 0 0 0 4 

Bic. Crashes (sev.-adj.) 571 0.2 0.4 0.0 0.0 0.4 3.4 

Bic. Crashes 571 0.5 0.9 0 0 1 8 

Students Reached (SRTS) 571 10,062.7 3,725.6 2,600 9,000 12,129 13,907 

Students Educated (SRTS) 571 5,652.4 1,553.7 2,121 5,828 6,544 7,700 

Adults Reached (SRTS) 571 1,551.7 1,169.5 100 200 2,679 3,000 

Adults Trained (SRTS) 571 90.4 36.1 20 50 124 134 

Participants (OS) 571 4,691.7 6,334.2 0 0 11,888 16,312 

Attendees (BAP) 571 433.1 763.2 0 0 492 2,404 

Participants (BTWD) 571 3,457.8 2,035.0 0 3,082 4,995 6,009 

Notes:  

Ped. = pedestrian, Bic. = bicyclist, sev.-adj. = severity-adjusted 

N = observation count, St. Dev. = standard deviation, Min = minimum, Pctl(25) = 25th percentile, Pctl(75) = 75th percentile, 

Max = maximum 
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Table 6 presents the program effectiveness model results for Fort Collins. Bicyclist and 

pedestrian volumes were modelled separately, each with full and reduced models (reduced via 

stepwise selection using the Akaike information criterion [AIC]). Both Poisson and negative 

binomial models were estimated, but the AIC indicated that the Poisson distribution was 

inappropriate; therefore, only the negative binomial model results are provided. The value of 

each coefficient is provided, with statistical significance indicated by asterisks (* indicates 

p<0.10, ** p<0.05, *** p<0.01) and 95% confidence intervals in parentheses.  

Table 6. Program effectiveness model results, Fort Collins 

 AADB AADP 
 Full Stepwise Full Stepwise 

 

Constant 1.745 3.469*** 14.017*** 12.762*** 
 (-2.611, 6.101) (1.929, 5.010) (9.478, 18.557) (8.588, 16.936) 
     

log(AADP) 0.525*** 0.543***   

 (0.466, 0.585) (0.487, 0.600)   
     

log(AADB)   0.599*** 0.606*** 
   (0.534, 0.665) (0.540, 0.671) 
     

log(AADM) 0.078 0.098* -0.690*** -0.689*** 
 (-0.042, 0.199) (-0.018, 0.215) (-0.810, -0.570) (-0.809, -0.568) 
     

Ped. Crashes (sev.-adj.) 0.208  0.658** 0.374*** 
 (-0.335, 0.751)  (0.083, 1.233) (0.206, 0.543) 
     

Ped. Crashes 0.086  0.201 0.112*** 
 (-0.150, 0.322)  (-0.049, 0.451) (0.028, 0.195) 
     

Bic. Crashes (sev.-adj.) -0.264  -0.613  

 (-1.314, 0.785)  (-1.728, 0.501)  
     

Bic. Crashes -0.086  -0.191  

 (-0.605, 0.434)  (-0.742, 0.361)  
     

log(Students Educated (SRTS)) 0.242  -0.691*** -0.557** 
 (-0.252, 0.736)  (-1.216, -0.166) (-1.050, -0.064) 
     

log(Adults Reached (SRTS)) 0.176 0.104 -0.105  

 (-0.084, 0.435) (-0.024, 0.232) (-0.381, 0.172)  
     

log(Adults Trained (SRTS)) -0.377 -0.290* 0.102  

 (-0.869, 0.114) (-0.599, 0.020) (-0.422, 0.626)  
     

log(Participants (OS)) -0.006  0.041*  

 (-0.046, 0.033)  (-0.001, 0.083)  
     

log(Attendees (BAP)) -0.025 -0.032** 0.022 0.055*** 
 (-0.065, 0.016) (-0.057, -0.007) (-0.021, 0.065) (0.031, 0.079) 
     

log(Participants (BTWD)) -0.030  0.083** 0.066** 
 (-0.097, 0.037)  (0.012, 0.154) (0.014, 0.118) 
      

Observations 571 571 571 571 
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 AADB AADP 
 Full Stepwise Full Stepwise 

Log Likelihood -4,208.771 -4,210.726 -3,509.385 -3,511.513 

Theta 1.501*** (0.081) 1.492*** (0.081) 1.335*** (0.072) 1.327*** (0.072) 

AIC 8,443.542 8,433.451 7,044.771 7,039.026 
 

Notes:  

Coefficients and 95% confidence intervals shown. 

*p<0.10; **p<0.05; ***p<0.01 

 

Results indicate that bicyclist volumes are positively correlated with pedestrian and motor 

vehicle volumes, but negatively correlated with some program metrics. The latter relationship 

may not be accurate and may instead reflect a geographical and/or temporal disconnect between 

the program metrics and volume counts. Again, while the relationships could be spurious, it is 

possible that outreach programs exerted a positive impact on volumes that were either not picked 

up by the turning movement studies or were washed out during the AAD volume estimation 

process. It may also be the case that programs increased in activity in response to lower volumes.  

Model results also indicated several unexpected relationships concerning pedestrians. Pedestrian 

volume was found to be positively correlated with bicyclist volumes, pedestrian crashes, and two 

bicyclist-oriented program metrics; and negatively correlated with motor vehicle volumes and 

one SRTS metric. Again, it seems highly unlikely that outreach programs would cause decreases 

in pedestrian volumes; rather they are simply correlated. The inverse relationship between 

AADP and AADM is indicative of mode shifts. 

Safety in Numbers 

SIN models were generated separately for bicyclists and pedestrians using the models described 

in the Statistical Analysis section. The program metrics acquired for Fort Collins describe 

various counts (attendees, participants, etc.). Missing annual counts were therefore assumed to be 

zero. For example, the number of Bike to Work Day participants begins in 2011, so a zero was 

used for all preceding years. The same data set used to evaluate the effectiveness of active 

transportation programs – or those programs supporting walking and bicycling – and was 

therefore used to investigate SIN. See Table 5 for summary statistics. 

Table 7 presents the SIN model results for Fort Collins. Bicyclist and pedestrian crashes were 

modelled separately, each with two negative binomial models: one with and one without the 

product of AADM and the appropriate non-motorized AAD volume. Note that these values are 

very large and were not log-transformed in accordance with Elvik, Sørensen, and Nævestad 

(2013). Both severity-adjusted and unadjusted crash counts were estimated, but the AIC 

indicated that the unadjusted counts produced better model fit; therefore, only unadjusted crash 

count model results are provided. The value of each coefficient is provided, with statistical 

significance indicated by asterisks (* indicates p<0.10, ** p<0.05, *** p<0.01) and 95% 

confidence intervals in parentheses.  
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Table 7. Model results, SIN, Fort Collins 

 Bicyclist Crashes Pedestrian Crashes 
 Simple Full Simple Full 

Constant -9.642*** -8.495*** -11.720*** -11.809*** 
 (-12.711, -6.574) (-12.213, -4.778) (-17.116, -6.323) (-18.141, -5.477) 

log(AADB) 0.314*** 0.231**   

 (0.181, 0.446) (0.029, 0.434)   

log(AADP)   0.469*** 0.476*** 
   (0.266, 0.672) (0.140, 0.812) 

log(AADM) 0.665*** 0.597*** 0.711*** 0.717*** 
 (0.396, 0.934) (0.300, 0.894) (0.244, 1.179) (0.205, 1.229) 

AADM x AADB  0.000   

  (-0.000, 0.000)   

AADM x AADP    -0.000 
    (-0.000, 0.000) 

Observations 571 571 571 571 

Log Likelihood -511.801 -511.218 -234.957 -234.955 

Theta 1.199*** (0.299) 1.235*** (0.315) 0.782* (0.404) 0.783* (0.405) 

AIC 1,029.602 1,030.437 475.913 477.911 

Notes:  

Coefficients and 95% confidence intervals shown. 

*p<0.10; **p<0.05; ***p<0.01 

 

Results indicate SIN for bicyclists, but only partial SIN for pedestrians. The full bicyclist crash 

model produced coefficients of 0.231 and 0.597 for log(𝐴𝐴𝐷𝐵) and log(𝐴𝐴𝐷𝑀), respectively, 

which sum to 0.828, indicative of complete SIN. These coefficients suggest that a 1% increase in 

AADB is associated with a 0.231% increase in bicyclist crashes, that a 1% increase in AADM is 

associated with a 0.597% increase in bicyclist crashes, and that a simultaneous 1% increase in 

both modes is associated with a 0.828% increase in bicyclist crashes. The 𝐴𝐴𝐷𝐵 × 𝐴𝐴𝐷𝑀 

interaction was not statistically significant, but its inclusion decreased the AAD volume 

coefficients relative to the simple model.  

For pedestrians, model results indicate partial SIN. The full pedestrian crash model produced 

coefficients of 0.476 and 0.717 for log(𝐴𝐴𝐷𝑃) and log(𝐴𝐴𝐷𝑀), respectively, which sum to 

1.193. These coefficients suggest that a 1% increase in AADP is associated with a 0.476% 

increase in pedestrian crashes, that a 1% increase in AADM is associated with a 0.717% increase 

in pedestrian crashes, and a simultaneous increase in both modes is associated with a 1.193% 

increase in pedestrian crashes. The 𝐴𝐴𝐷𝑃 × 𝐴𝐴𝐷𝑀 interaction was not statistically significant, 

and its inclusion caused minimal changes to AAD volume coefficients relative to the simple 

model. As with bicyclists, the weighted crash counts produced similar results. 

 



 

  35  

Philadelphia, Pennsylvania 

The Indego Bikeshare program was examined in Philadelphia. Publicly available trip summaries 

were analyzed to determine the annual number of bikeshare stations and trips. These metrics 

served as broad measures of the bikeshare program’s presence in the city over time. For more 

localized measures, the annual number of trips originating from each station was also calculated, 

shown in Figure 20. A small amount of random noise has been added to this map to visually 

separate multiple years of data at one station. As expected, more trips originated closer to the city 

center than the outskirts.  

Figure 20. Map of annual Indego Bikeshare trips by origin, Philadelphia 

All volumes for Philadelphia were provided by DVRPC, the federally designated MPO in 

Philadelphia. These volumes required extensive data manipulation, as described in Data 

Preparation: Connecting and Interpolating Data From Single-Mode Counters. 

 

Figure 21 provides histograms of AAD volumes for each road user group. Note that these 

histograms include all years and locations for which data were available. 

Figure 21. Histogram of AAD volumes by road user group, Philadelphia 
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Many of Philadelphia’s bicyclist volume counts were accompanied by additional variables 

describing bicycle facilities present at the location (bike lane, multi-use trail, various treatments 

that remove bicyclists from motorized traffic, “sharrows,” and striped shoulder) and a location 

type (low volume, mixed, and recreation). This information was included in analyses of AADB 

and bicyclist crashes, but not sufficiently present to use in pedestrian analyses.  

Crash data for Philadelphia were sourced from the Pennsylvania DOT’s Crash Information Tool 

(Pennsylvania DOT, n.d.). Figure 22 shows annual crashes by severity and the non-motorized 

road user group.  

Figure 22. Annual crashes by severity and affected non-motorized road user group, Philadelphia 

Program Effectiveness 

Program impacts on bicyclist and pedestrian volumes were evaluated using the models described 

in the Statistical Analysis section. Because bicyclist and pedestrian volumes were rarely co-

located, the two road user groups were analyzed separately. 

Table 8 provides summary statistics for all variables included in initial models of program 

effectiveness regarding bicyclists. The analysis data set consisted of 736 observations between 

2010 and 2019, with average AADB=429 and AADM=7,707. The number of crashes within 

each crash zone ranged from 0 to 2 (mean=0.1). The average distance between connected volume 

locations was 81m (see Data Preparation: Connecting and Interpolating Data From Single-

Mode Counters). Ninety percent of the observations were in mixed traffic, 20% with bike lanes, 

and 20% at low volume locations.  
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Table 8. Summary statistics for program effectiveness, bicyclists, Philadelphia 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

AADB 736 428.6 449.0 6 134.5 544 2,850 

AADM 736 7,707.4 5,443.0 59 3,995.1 9,720 38,226 

Indego Trips (localized) 736 1,733.5 3,621.6 0 0 0 19,090 

Ped. Crashes (sev.-adj.) 736 0.1 0.2 0 0 0 1 

Ped. Crashes 736 0.2 0.4 0 0 0 3 

Bic. Crashes (sev.-adj.) 736 0.1 0.2 0 0 0 1 

Bic. Crashes 736 0.1 0.4 0 0 0 2 

Indego Trips (global) 736 241,781.3 309,271.1 0 0 650,239 782,556 

Indego Stations 736 58.6 80.3 0 0 139 210 

Bike Lane Present 736 0.2 0.4 0 0 0 1 

Mixed Traffic 736 0.9 0.3 0 1 1 1 

Trail Location 736 0.1 0.2 0 0 0 1 

Physical Separation from Motorized Traffic 736 0.1 0.2 0 0 0 1 

Pavement Markings Present 736 0.1 0.3 0 0 0 1 

Low Volume Corridor 736 0.2 0.4 0 0 0 1 

Recreation Location 736 0.1 0.3 0 0 0 1 

Notes:  

Ped. = pedestrian, Bic. = bicyclist, sev.-adj. = severity-adjusted 

N = observation count, St. Dev. = standard deviation, Min = minimum, Pctl(25) = 25th percentile, Pctl(75) = 75th percentile, 

Max = maximum 

Table 9 provides summary statistics for all variables included in initial models of program 

effectiveness regarding pedestrians. The analysis data set consisted of 284 observations between 

2010 and 2019, with average AADP=2,136 and AADM=11,765. The number of crashes within 

each crash zone ranged from 0 to 9 (mean=0.3). The average distance between connected volume 

locations was 137 m (see Data Preparation: Connecting and Interpolating Data From Single-

Mode Counters for more information). 

Table 9. Summary statistics for program effectiveness, pedestrians, Philadelphia 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

AADM 284 11,765.0 7,069.5 114 6,540.1 15,704 50,888 

AADP 284 2,135.8 2,875.3 0 446.0 2,838 14,920 

Indego Trips (localized) 284 735.5 2,347.4 0 0 0 13,322 

Ped. Crashes (sev.-adj.) 284 0.1 0.4 0.0 0.0 0.0 4.5 

Ped. Crashes 284 0.3 0.8 0 0 0 9 

Bic. Crashes (sev.-adj.) 284 0.1 0.2 0.0 0.0 0.0 1.1 

Bic. Crashes 284 0.1 0.3 0 0 0 2 

Indego Trips (global) 284 233,205.0 309,438.6 0 0 650,239 782,556 

Indego Stations 284 58.2 82.3 0 0 139 210 

Bicyclist and pedestrian volumes were modelled separately, using Poisson and negative binomial 

response distributions, with and without statistical weights derived from the distance between 

volume counting locations. The AIC statistic was used to compare different model specifications 
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as well as weighting schemes (Ingdal et al., 2019), and indicated that negative binomial, 

distance-weighted models were superior.  

Table 10 provides the full and reduced (via stepwise selection) negative binomial, distance-

weighted models. The value of each coefficient is provided, with statistical significance indicated 

by asterisks (* indicates p<0.10, ** p<0.05, *** p<0.01) and 95% confidence intervals in 

parentheses.  

The reduced model results indicate that bicyclist and pedestrian volumes are positively 

associated with motor vehicle volumes: a 1% increase in AADM is associated with a 0.234% 

increase in AADB and a 0.405% increase in AADP. Volumes are generally correlated, so this 

relationship is to be expected. Crashes involving bicyclists were also statistically significant, 

though interestingly severity-adjusted crashes were associated with AADB while unadjusted 

crashes were associated with relatively larger increases in AADP. This could suggest that 

bicyclists are able to perceive the severity of crashes involving other bicyclists and continue to 

increase in number, while pedestrians perceive all crashes involving bicyclists as deterrents, and 

respond by increasing in number. However, a more likely explanation is that the two data sets 

simply include different locations.  

Two of the three program metrics were found to be statistically significantly associated with 

AADB. Increases in Indego stations were negatively correlated with AADB, but this is likely due 

to a disconnect between localized volumes and city-wide stations. Notably, the localized number 

of Indego trips was positively associated with AADB. This suggests that the program 

successfully increased bicyclist volumes in Philadelphia. Further, the lack of significance 

between Indego program metrics and AADP suggests that the program created new bicyclists 

rather than converting them from pedestrians.  

All indicator variables in Table 10 use the absence of the listed characteristic as the reference. 

Thus, these coefficients can be interpreted as follows: bike lanes are associated with 

exp(0.276) = 1.3 times more AADB than corridors without bike lanes. Bike lanes, mixed 

traffic, trails, and physical separations (buffered and protected bike lanes) were associated with 

increased AADB, while low volume corridors and recreation areas were associated with 

decreased AADB.  
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Table 10. Model results, program effectiveness, Philadelphia 

 AADB AADP 

 Full Reduced Full Reduced 

Constant 3.602*** 3.549*** 4.093*** 3.752*** 

 (2.658, 4.547) (2.614, 4.484) (1.566, 6.621) (1.215, 6.290) 

log(AADM) 0.229*** 0.234*** 0.378*** 0.405*** 

 (0.132, 0.326) (0.138, 0.330) (0.106, 0.651) (0.131, 0.679) 

log(Bic. Crashes, sev.-adj.) 1.198 0.514** 0.728  

 (-1.284, 3.680) (0.016, 1.012) (-8.508, 9.964)  

log(Bic. Crashes) -0.432  0.522 1.088** 

 (-1.973, 1.109)  (-5.298, 6.342) (0.179, 1.997) 

log(Ped. Crashes, sev.-adj.) 0.620  0.638  

 (-1.468, 2.709)  (-3.566, 4.843)  

log(Ped. Crashes) -0.357  -0.268  

 (-1.655, 0.942)  (-2.982, 2.447)  

log(Indego Trips, global) 0.053  -0.034  

 (-0.066, 0.172)  (-0.428, 0.359)  

log(Indego Stations) -0.210 -0.069*** 0.031  

 (-0.528, 0.109) (-0.111, -0.026) (-1.015, 1.077)  

log(Indego Trips, localized) 0.037*** 0.038***   

 (0.009, 0.065) (0.010, 0.066)   

Bike Lane Present 0.275** 0.276**   

 (0.040, 0.510) (0.046, 0.507)   

Mixed Traffic 0.398* 0.410*   

 (-0.042, 0.838) (-0.023, 0.843)   

Trail Location 1.383*** 1.385***   

 (0.840, 1.927) (0.845, 1.926)   

Physical Separation from Motorized Traffic 0.400** 0.392**   

 (0.048, 0.751) (0.044, 0.740)   

Pavement Markings Present -0.013    

 (-0.364, 0.338)    

Low Volume Corridor -0.952*** -0.935***   

 (-1.161, -0.742) (-1.143, -0.727)   

Recreation Location -0.666*** -0.650***   

 (-1.083, -0.249) (-1.063, -0.236)   

Observations 736 736 284 284 

Log Likelihood -2,498.461 -2,499.243 -752.366 -753.354 

Theta 2.050*** (0.141) 2.042*** (0.141) 0.891*** (0.119) 0.876*** (0.117) 

AIC 5,028.922 5,020.486 1,520.732 1,512.708 

Notes:  

Coefficients and 95% confidence intervals shown. 

*p<0.10; **p<0.05; ***p<0.01 
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Safety in Numbers 

SIN models were generated separately for bicyclists and pedestrians using the models described 

in the Statistical Analysis section. The program metrics acquired for Philadelphia describe 

various counts (stations and trips). Missing annual counts were therefore assumed to be zero. The 

same data sets used to evaluate the effectiveness of the Indego bikeshare program were therefore 

used to investigate SIN. See Table 8 for summary statistics on bicyclists and Table 9 for 

summary statistics on pedestrians. Note that the “trail location” indicator variable was omitted 

from SIN models due to zero crashes being recorded in such locations. 

Remarkably few crashes occurred within the 76.2 m-radius crash zones: 90% of locations 

experienced zero bicyclist crashes, and 86% experienced zero pedestrian crashes. In an attempt 

to increase the number of crashes analyzed, the crash radius was doubled, but it did not produce 

meaningfully different results. The original 76.2 m-radius crash zones were used in the models 

discussed below. Zero-inflated models were also employed to account for this dispersion.  

Bicyclist and pedestrian volumes were modelled separately, using Poisson and negative binomial 

response distributions, with and without zero-inflation, and with and without statistical weights 

derived from the distance between volume counting locations. Similar models were also 

estimated for severity-weighted crash counts. AIC statistics indicated that Poisson, distance-

weighted models of unadjusted crash counts were superior. Table 11 provides the full and 

reduced (via stepwise selection) Poisson, distance-weighted SIN models for Philadelphia. The 

value of each coefficient is provided, with statistical significance indicated by asterisks (* 

indicates p<0.10, ** p<0.05, *** p<0.01) and 95% confidence intervals in parentheses. 

Results did not indicate safety, nor hazard, in numbers for bicyclists or pedestrians. The full 

bicyclist crash model yielded negative coefficients for log(AADB) and log(AADM). These 

results, although not statistically significantly different from zero, would indicate decreases in 

crashes associated with increases in volumes. The reduced model omitted both terms, keeping 

only the presence of a bike lane, and the product of AADM and AADB. Locations with bike 

lanes were associated with approximately one-third as many bicyclist crashes compared to 

locations without (𝑒−1.020 = 0.36). Notably, none of the Indego bikeshare program metrics were 

found to be statistically significantly associated with bicyclist crashes. Based on the variables 

used in the model, this indicates that the bikeshare program neither positively nor negatively 

affected safety in Philadelphia. Note that additional information such as infrastructure features 

over time and the actual paths taken by bikeshare users may shed new light on the process by 

which the program influenced volumes. 

The full pedestrian crash model also produced unlikely results: an extreme, complete SIN effect 

due to the low sum of the coefficients on log(AADP) and log(AADM). These terms were also 

omitted in the reduced model.   
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Table 11. Model results, SIN, Philadelphia 

 Bicyclist Crashes Pedestrian Crashes 

 Full Reduced Full Reduced 

Constant -1.217 -2.177*** -2.437 -1.654*** 

 (-6.266, 3.833) (-2.511, -1.843) (-8.615, 3.742) (-2.193, -1.115) 
     

log(AADB) -0.134    

 (-0.550, 0.282)    
     

log(AADP)   0.116  

   (-0.325, 0.556)  
     

log(AADM) -0.185  0.004  

 (-0.551, 0.180)  (-0.593, 0.600)  
     

Indego Trips (global) -0.205    

 (-0.717, 0.307)    
     

Indego Trips (localized) -0.061    

 (-0.177, 0.055)    
     

Indego Stations 0.600    

 (-0.757, 1.958)    
     

Bike Lane Present -1.039 -1.020*   

 (-2.333, 0.255) (-2.187, 0.148)   
     

Mixed Traffic 1.435    

 (-1.987, 4.857)    
     

Physical Separation from Roadway -1.056    

 (-3.161, 1.049)    
     

Pavement Markings Present -0.245    

 (-1.716, 1.227)    
     

Low Volume Corridor -0.286    

 (-1.330, 0.758)    
     

Recreation Location -0.250    

 (-2.359, 1.860)    
     

AADM x AADB  0.000*** 0.000**   

 (0.000, 0.000) (0.000, 0.000)   
     

AADM x AADP   0.000 0.000*** 

   (-0.000, 0.000) (0.000, 0.000) 
      

Observations 736 736 284 284 

Log Likelihood -135.531 -139.268 -57.413 -57.557 

AIC 297.063 284.536 122.825 119.115 
 

Notes:  

Coefficients and 95% confidence intervals shown. 

*p<0.10; **p<0.05; ***p<0.01 
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The Role of Infrastructure 

The presence of 17 pedestrian/bicyclist facilities was added to the statistical models described 

above to investigate the role of infrastructure. Because bicyclist and pedestrian volumes were 

rarely co-located, the two road user groups were analyzed separately. Table 12 lists the facilities 

and their prevalence among complete observations for each road user group. Recall that 

complete observations are those with at least two volumes (AADM and AADB or AADP), 

crashes, and program metrics for a given location and year.  

Table 12. Percentage of complete observations with each infrastructure element 

Infrastructure Element 

Bicyclists  

(N=695) 

Pedestrians 

(N=257) 

Bike box 0.4 0.0 

Bike lane, buffered 8.9 1.6 

Bike lane, grade-separated 1.7 4.7 

Bike lane, protected 0.3 0.0 

Bike lane, standard 28.8 37.7 

Bikeshare station 2.0 1.9 

Bump out 4.3 5.8 

Crosswalk, high-visibility 2.5 45.1 

Crosswalk, standard 4.5 09.3 

Median refuge 4.0 12.5 

Pedestrian hybrid beacon 1.0 1.2 

Pedestrian signal 22.2 30.0 

Sidewalk, buffered 7.6 16.0 

Sidewalk, standard 8.0 96.9 

Signalized intersection 3.0 41.2 

Stop sign 4.5 14.0 

Street parking 5.8 51.0 

 

The new models described below cannot address whether the installation of infrastructure 

elements is responsible for changes in volumes or crashes. Such conclusions would require 

numerous observations per location; 75% of the locations available for analysis had 4 or fewer 

annual observations. Rather, these models attempt to explain some of the variation in volumes 

and crashes that was previously more coarsely quantified with other model terms.  

As before, models were fit using all of the new variables (the “full” models) and then simplified 

using stepwise selection (the “reduced” models). Table 13 and Table 14 provide succinct 

comparisons of the changes in the reduced models resulting from the addition of new 

infrastructure data, and Table 15 summarizes the findings related to each infrastructure element.   



 

  43  

Table 13. Comparison of model results after adding infrastructure data,  

program effectiveness, Philadelphia 

 AADB AADP 

 

Without 

Infrastructure 

With 

Infrastructure 

Without 

Infrastructure 

With 

Infrastructure 

Constant 3.549*** 0.762 3.752*** 4.948*** 

log(AADM) 0.234*** 0.435*** 0.405*** 0.324** 

log(Bic. Crashes, sev.-adj.) 0.514**    

log(Bic. Crashes)   1.088** 1.406*** 

log(Indego Stations) -0.069*** -0.040*   

log(Indego Trips, localized) 0.038*** 0.048***   
Notes:  

Coefficients shown (95% confidence intervals omitted). Only terms appearing in the models without infrastructure data are shown in order 

to compare the differences in results. Findings associated with new infrastructure elements are provided in a separate table.  

*p<0.10; **p<0.05; ***p<0.01 

Bic. = bicyclist, sev.-adj. = severity-adjusted 

Adding infrastructure elements to the AADB model results in a shift of statistical significance 

from the constant term to several infrastructure elements (see Table 15). The constant term can 

generally be thought of as an overall average, with other model terms indicating increases or 

decreases from this baseline. This shift suggests that the new model has decomposed what the 

previous model lumped into an average (the constant). The new model thus produces more 

precise estimates of AADB.  

The coefficient for log(AADM) increased for AADB and decreased for AADP. This indicates 

that, after adjusting for infrastructure elements, a 1% increase in AADM is associated with a 

0.435% increase (previously 0.234%) in AADB and a 0.324% increase (previously 0.405%) in 

AADP. 

The effect of the number of severity-adjusted bicyclist crashes on AADB became insignificant. 

This suggests that infrastructure elements are now explaining what was previously attributed to 

bicyclist crashes. On the contrary, the effect of the number of (non-adjusted) bicyclist crashes 

increased after adding infrastructure elements, indicating a stronger increase in AADP with 

increases in bicyclist crashes than previously predicted.  

The coefficients for the number of nearby Indigo stations and trips did not change significantly 

after adding infrastructure elements. This suggests that the effect of this program was already 

adequately modeled. 

Table 14. Comparison of model results after adding infrastructure data, SIN, Philadelphia 

 Bicyclist Crashes Pedestrian Crashes 

 
Without 

Infrastructure 

With 

Infrastructure 

Without 

Infrastructure 

With 

Infrastructure 

Constant -2.177*** -1.131 -1.654*** -1.296*** 

log(AADB)  -0.300*   
Notes:  

Coefficients shown (95% confidence intervals omitted). Only terms appearing in the models without infrastructure data are shown in order 

to compare the differences in results. Findings associated with new infrastructure elements are provided in a separate table. 

*p<0.10; **p<0.05; ***p<0.01 

As with AADB, the constant term for bicyclist crashes became statistically insignificant with the 

addition of infrastructure data, while several new infrastructure terms became significant (see 
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Table 15). Notably, log(AADB) became significant and negative, indicating that a 1% increase 

in log(AADB) is associated with a 0.3% decrease in bicyclist crashes. SIN predicts a less-than-

proportional increase in crashes associated with a given change in volumes, but this relationship 

suggests a decrease in crash rates associated with an increase in bicyclist volume (all else equal). 

Table 15 summarizes the effects of infrastructure elements on both volumes and safety. The values 

in the table represent the ratio between the metric listed at the top of the column with the 

infrastructure and without it. For example, the presence of bike lanes is associated with roughly 

half (0.53) as much pedestrian volume as locations without bike lanes. Values above 1.0 

generally indicate more volume or more crashes and values less than one indicate the opposite. 

Table 15. Summary of the effects of infrastructure elements on volumes and safety 

Infrastructure Element AADB AADP 
Bicyclist 

Crashes 

Pedestrian 

Crashes 

Bike box     

Bike lane, buffered  0.03   

Bike lane, grade-separated 5.12    

Bike lane, protected 0.19    

Bike lane, standard  0.53 0.26 0.21 

Bikeshare station     

Bumpout     

Crosswalk, standard   13.82  

Crosswalk, high-visibility 1.41  10.23  

Median refuge 0.55    

Pedestrian hybrid beacon 2.83    

Pedestrian signal    4.42 

Sidewalk, standard 2.37    

Sidewalk, buffered     

Signalized intersection  0.62 0.10  

Stop sign 0.62 0.43 0.04  

Street parking 1.39    

Notes:  

Values shown represent the ratio of volume or crashes among complete observations with each 

infrastructure element relative to those without. 

Only coefficients determined to be at least 95% statistically significant are shown. 

Some infrastructure elements were associated with higher bicyclist volumes, while others were 

associated with lower volumes. Observations made near grade-separated bike lanes were 

associated with the greatest positive difference in AADB (5.12) relative to observations without, 

followed by pedestrian hybrid beacons (2.83), standard sidewalks (2.37), high-visibility 

crosswalks (1.41), and street parking (1.39). Interestingly, protected bike lanes were associated 

with the greatest negative difference (0.19) followed by median refuges (0.55) and stop signs 

(0.62). Pedestrian volumes were roughly half as high near bike lanes, signalized intersections and 

stop signs relative to locations without, while buffered bike lanes are associated with just 3% of 

the pedestrian volume observed in the absence thereof.  

Three infrastructure elements (standard bike lanes, signalized intersections, and stop signs) were 

associated with significantly fewer bicyclist crashes while both standard and high-visibility 

crosswalks were associated with alarmingly higher rates of bicyclist crashes. These findings 

underscore the importance of predictability on the road. Bike lanes, traffic signals, and stop signs 

may be effective at helping drivers detect bicyclists and encouraging road users to obey a right-
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of-way. Note that the crosswalks are not significant predictors of pedestrian crashes, only 

bicyclist crashes. Some bicyclists opt to ride on the sidewalk instead of in the traffic lane; when 

they approach intersections these bicyclists often cross in crosswalks, as they are natural 

extensions of sidewalks. This can surprise drivers by defying their expectations of how various 

road users pass through the intersection. 

Locations with pedestrian signals were associated with 4.42 times as many pedestrian crashes 

compared to locations without. It may be that pedestrian signals were installed at high-

pedestrian-volume locations, and this coefficient is the result of the elevated opportunity for 

incidents. Alternatively, this may suggest a pattern of misuse or noncompliance at pedestrian 

signals. 

Anchorage, Alaska 

Despite the research team’s efforts, insufficient program metrics were acquired from Anchorage 

for analysis. As such, the program analysis was excluded for this location.  

All volume and crash data for Anchorage were extracted from the Alaska DOT’s Traffic Data 

Management System (Alaska DOT, 2021). Single-mode volumes were geocoded using the 

method described in Data Preparation: Geocoding Crash and Volume Locations and then 

connected using the method described in Data Preparation: Connecting and Interpolating Data 

From Single-Mode Counters. This process yielded 100 observations for bicyclists and 111 

observations for pedestrians. The majority of these observations (87% for bicyclists, 83% for 

pedestrians) took place in 2018. Figure 23 provides histograms of AAD volumes for each road 

user group in the final data sets.  

Figure 23. Histogram of AAD volumes by road user group, Anchorage  
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Figure 24 shows annual crashes by severity and the non-motorized road user group. Note that, 

although twenty years of crashes are shown, the final data set primarily consists of observations 

in 2018. During that time, 77% of locations experienced zero bicyclist crashes and 79% 

experienced zero pedestrian crashes within the 250 m-radius crash zones.  

Figure 24. Annual crashes by severity and affected non-motorized road user group, Anchorage 

Table 16 provides summary statistics for the bicyclist data set. The 100 observations took place 

between 2016 and 2019 (with 87% occurring in 2018 alone), with average AADM=21,879 and 

AADB=85. The number of crashes within each crash zone ranged from 0 to 3 (mean=0.3). The 

average distance between connected volume locations was 88m (see Data Preparation: 

Connecting and Interpolating Data From Single-Mode Counters for more information). 

Table 16. Summary statistics, bicyclists, Anchorage 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

AADM 100 21,878.5 16,463.6 700 10,050 28,150 103,700 

AADB 100 85.2 119.9 10 10 100 508 

Bic. Crashes (sev.-adj.) 100 0.2 0.4 0.0 0.0 0.0 1.8 

Bic. Crashes 100 0.3 0.6 0 0 0 3 

Table 17 provides summary statistics for the pedestrian data set. The 111 observations also took 

place between 2016 and 2019 (with 83% occurring in 2018 alone), with average AADM=24,970 

and AADP = 136. The number of crashes within each crash zone ranged from 0 to 5 (mean=0.3). 

The average distance between connected volume locations was 114m (see Data Preparation: 

Connecting and Interpolating Data From Single-Mode Counters for more information).  
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Table 17. Summary statistics, pedestrians, Anchorage 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 
 

AADM 111 24,969.7 24,425.2 700 10,750 30,900 162,000 

AADP 111 135.7 186.6 10 30 170 1,360 

Ped. Crashes (sev.-adj.) 111 0.2 0.4 0 0 0 2 

Ped. Crashes 111 0.3 0.7 0 0 0 5 

Bicyclist and pedestrian volumes were modelled separately, using Poisson and negative binomial 

response distributions, with and without zero-inflation, and with and without statistical weights 

derived from the distance between volume counting locations. Similar models were also 

estimated for severity-weighted crash counts. AIC statistics indicated that Poisson, distance-

weighted models of unadjusted crash counts were superior. Models were also fit with and 

without volume interaction terms. Stepwise selection was not applied, as the only variables 

available were those required for the SIN model described in the Statistical Analysis section. 

Table 18 provides the Poisson, distance-weighted SIN models for Anchorage. The value of each 

coefficient is provided, with statistical significance indicated by asterisks (* indicates p<0.10, ** 

p<0.05, *** p<0.01) and 95% confidence intervals in parentheses. 

Table 18. Model results, SIN, Anchorage 

 Bicyclist Crashes Pedestrian Crashes 

 Simple Full Simple Full 

Constant -10.679*** -22.793*** -9.066*** -9.504** 
 (-18.086, -3.272) (-38.688, -6.897) (-15.228, -2.903) (-17.058, -1.950) 

log(AADB) 0.075 1.147*   

 (-0.341, 0.490) (-0.076, 2.370)   

log(AADP)   0.547*** 0.589** 
   (0.204, 0.891) (0.053, 1.125) 

log(AADM) 0.933** 1.837*** 0.552* 0.580* 
 (0.182, 1.685) (0.527, 3.146) (-0.046, 1.150) (-0.079, 1.239) 

AADM x AADB  -0.000   

  (-0.000, 0.000)   

AADM x AADP    -0.000 
    (-0.000, 0.000) 

Observations 100 100 111 111 

Log Likelihood -49.211 -45.651 -48.025 -48.005 

AIC 104.421 99.301 102.051 104.011 

Notes:  

Coefficients and 95% confidence intervals shown. 

*p<0.10; **p<0.05; ***p<0.01 
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Results indicate complete SIN for bicyclists and partial SIN for pedestrians. The 𝐴𝐴𝐷𝑀 ×
𝐴𝐴𝐷𝐵 and 𝐴𝐴𝐷𝑀 × 𝐴𝐴𝐷𝑃 terms were found statistically insignificant, while increasing the 

values of the parameters of interest. Hence, the “simple” model is discussed here. According to 

the “simple” model of bicyclist crashes, a 1% increase in AADM was associated with a 0.933% 

increase in bicyclist crashes. The coefficient for log (AADB) was not statistically significantly 

different from 0, supporting the conclusion that increases in AADB were not associated with any 

change in bicyclist crashes. The sum of the two coefficients is thus effectively 0.933 + 0 =
0.933 < 1 which satisfies the condition for complete SIN.  

For pedestrians, a 1% increase in AADP was associated with a 0.547% increase in pedestrian 

crashes, and a 1% increase in AADM was associated with a 0.552% increase in pedestrian 

crashes, implying that a 1% increase in both volumes would be associated with a 1.069% 

increase in pedestrian crashes. This is known as a partial SIN because each exponent is 

individually less than one, but their sum is greater than one. 
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Conclusions 

This report is a culmination of an extensive investigation into SIN. Simply put, SIN is the idea 

that more walking and biking is associated with a safer road environment for pedestrians and 

bicyclists. Specifically, as the number of people who walk and bike increase, pedestrian and 

bicyclist crashes will increase at a lower rate. As more agencies are focusing on ways to reduce 

crashes, including efforts such as the Road to Zero or Vision Zero, measures that might increase 

pedestrian and bicycle crashes are a concern. SIN would help to provide the understanding of 

potential outcomes associated with increases the number of people walking and bicycling. A 

literature review conducted as part of this project provides a detailed history of the SIN concept, 

including when the term was first coined and challenges to and refinement of the concept (Kehoe 

et al., 2022).  

What has been clear is that the cause of SIN is not well-understood. Jacobson (2003) 

hypothesized that SIN is a result of driver adaptation to increasing numbers of pedestrians and 

bicyclists in the driving environment. However, there are many other factors that might affect the 

presence of SIN, including population density (Coughenour et al., 2013), land use (Geng, 2014), 

infrastructure and countermeasure elements (Dumbaugh et al., 2013), policies and enforcement 

activities (Bhatia & Wier, 2011), cultural perspectives and attitudes toward non-motorized traffic 

(Fyhri et al., 2014), and education and outreach efforts (Johnson et al., 2014).  

The evaluation described herein was undertaken to investigate the effect of pedestrian- and 

bicyclist-focused programs in increasing walking and biking and if implementing such programs 

creates a demonstratable SIN effect. Program evaluation results are often not formally published, 

do not describe the relationship between an increase in pedestrian and bicyclist volume and 

crashes, or discuss the other factors that may influence SIN. This project sought to use existing 

data from established programs to investigate SIN. 

Findings and Discussion  

Table 19 provides a summary of the findings for each program site evaluated in terms of 

program effectiveness and SIN, for both pedestrians and bicyclists.  

Table 19. Summary of findings 

Site 
Program effectiveness  Safety in Numbers 

Bicyclists Pedestrians  Bicyclists Pedestrians 

Fort Collins Unclear Unclear  Safety (complete) Safety (partial) 

Philadelphia Success Not Applicable  No relation No relation 

Anchorage Insufficient Data Insufficient Data  Safety (complete) Safety (partial) 

The effect that selected programs exerted on bicyclist and pedestrian volumes remains unclear. 

The negative correlation between volumes and some program metrics in Fort Collins more likely 

reflects a geographical and/or temporal disconnect between the program metrics and volumes. 

Safe Routes to School and other programs may influence bicyclist and pedestrian volumes on a 

(geographic) scale too small to be measured by volume counts. Regardless of the size of the area 

of influence, if counts are not conducted in the highly localized communities where programs are 

implemented (e.g., within walking distance of schools), there is little chance that any change will 
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be measured. The positive correlation between bicyclist volumes and localized bikeshare trips – 

and lack of correlation between volumes and city-wide trips – provides further evidence of this 

claim. 

The analysis used annualized statistics for nine years in Fort Collins, 10 years in Philadelphia, 

and essentially one year in Anchorage. Annualized statistics may not provide the level of 

granularity required to detect meaningful changes, and these time spans may not be long enough 

for slower changes to manifest. The nature of some of the programs studied may cause 

immediate volume shifts while others may take several years to produce changes in volumes. For 

example, a group ride that some participants subsequently adopt, and repeat could cause an 

immediate increase in volume, but Safe Routes to School may provide younger road users with 

the skills and confidence to bicycle or walk for years to come.  

Of course, many other relevant factors could be in flux over the course of the observation period, 

such as infrastructure improvements and culture shifts. Some transportation agencies develop 

inventories of infrastructure features, but infrastructure changes over time, and inventories must 

be updated to support meaningful research. An ad-hoc analysis of Philadelphia revealed several 

statistically significant predictors of volumes and crashes. Most notably, both standard and high-

visibility crosswalks were associated with higher rates of crashes among bicyclists, and 

pedestrian signals were associated with higher crash rates among pedestrians; while this seems 

counterintuitive, the findings likely result from increased exposure and higher volumes of 

pedestrians and bicyclists at these locations. Crosswalks and signals are typically installed in 

areas that exhibit more potential for conflicts between pedestrian, bicyclist, and vehicle 

movements and in areas with higher pedestrian and bicyclist volumes. While exposure may 

explain the results, the underlying mechanisms for these relationships are unclear. More detailed 

and targeted analysis of infrastructure elements and crash circumstances may produce valuable 

insight into these results. 

This analysis produced differing results for pedestrians and bicyclists concerning SIN. Bicyclists 

in Fort Collins and Anchorage benefit from complete SIN, while pedestrians experienced only 

partial SIN. Recall that complete SIN is said to occur when bicyclist/pedestrian crashes increase 

at a rate less than proportional to simultaneous increases in bicyclist/pedestrian and motor 

vehicle volumes. In contrast, partial SIN occurs when bicyclist/pedestrian crashes increase at a 

rate less than proportional to increases in bicyclist/pedestrian or motor vehicle volumes. The 

outcome of complete SIN for bicyclists and partial SIN for pedestrians may indicate an important 

difference between the two travel modes. Perhaps – because bicyclists generally ride in the road, 

whether in a bike lane or mixed with motorized traffic, while pedestrians are more often removed 

from the road by a sidewalk and mostly interact with motorized traffic through traffic control 

devices – an increase in bicyclist volumes elicits a greater response from drivers than a 

comparable increase in pedestrian volumes. This possibility speaks to the larger question 

surrounding the exact mechanism behind SIN. 

Challenges and Opportunities 

Robust, multifaceted data are required to evaluate program effectiveness and SIN. The literature 

and the analysis described in this report demonstrate how these are challenging to obtain. 

Comprehensive count or volume data are rarely readily available for pedestrians and bicyclists, 

and collecting these data is often resource-intensive. The research team encountered four major 
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challenges concerning the data and developed solutions from which future researchers can 

benefit. Short-term counts are essentially meaningless unless they can be converted into more 

standardized statistics (i.e., AAD volumes). These converted statistics would remain unsuitable 

for analysis if they were single-mode counts and consolidating single-mode counts would be 

laborious and error-prone if their geographical locations were not expressed in latitude and 

longitude. See the Data Preparation section for more information on how these challenges were 

overcome. 

There are other challenges with pedestrian and bicycle safety data including incomplete crash 

data sets due to underreporting of pedestrian and bicycle injury data. Also, the built environment 

can have a substantial impact on crashes. While some researchers have been successful in 

introducing variables describing the built environment and behavioral characteristics, these 

topics are a current gap in SIN research and are often covered only briefly, if at all, by current 

research. Overcoming that gap in SIN research will require robust data sets related to those 

environmental and behavioral characteristics; however, these data have practical limitations. For 

example, organizations involved in transportation (Departments of Transportation at the State 

and local levels, regional planning organizations, public health agencies, transportation service 

providers (such as bike share organizations), schools, law enforcement organizations, etc.) have 

different data collection capabilities based on their organizational goals at the time and their 

resources. This is even more apparent in program data collection. In many instances, pedestrian 

and bicycle programs dedicate their resources to implementation efforts and less often on record 

keeping on activities. This can ultimately limit knowledge about the reach and impact of the 

program.  

One question that still lingers is: what causes SIN? This research can point to correlations in the 

data but not causation. As discussed with the data challenges, with increased and improved data 

sets, researchers can come closer to understanding the factors influencing SIN. Some education 

and encouragement programs – such as Safe Routes to School – have better data sets because of 

funding requirements tied to program elements and participation. Regardless, there are many 

opportunities for improvements in data sources, such as program participation, robust pedestrian 

and bicyclist volume and crash data collection, monitoring changes in pedestrian/bicyclist/driver 

behaviors, improved infrastructure documentation (such as installation dates), and surveys to 

determine the impact of education and encouragement programs. Advance planning for data 

collection efforts can facilitate analyses to gain a better understanding of what works to improve 

safety for pedestrians and bicyclists.  
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Appendix A: Preliminary Program Site List 

This section provides information on programs considered for this project. Symbols to the left of 

each program name indicate the program’s target audience. Parentheticals indicate the program’s 

location and first year of operation. 

 

 Watch for Me NC (North Carolina, 2012) 

Unique features Statewide - there are both urban and rural areas, numerous universities, 

and heavy tourism. 

Known data available There are annual progress reports between 2012 and 2018 as well as a 

crash-based evaluation by Saleem et al. (2018). Progress reports and 

evaluation reports associated with the program describe data collection 

through the program, including number of workshops held, number of 

workshop participants, amount of paid and earned media delivered, 

quantity and type of law enforcement activities, number of pedestrian- 

or bicyclist-related crashes. 

Basis for selection This program is still active, has large reach, and appears that data may 

be accessible based on the progress reports and evaluation report.  

Points of contact Senior Research Associate at the UNC Highway Safety Research 

Center; Former NCDOT Bicycle and Pedestrian Coordinator 

 

 Colorado Pedals (Colorado, 2015) 

Unique features High tourism, residents are known for having an active lifestyle, the 

majority of residents own a bicycle. 

Known data available The 2016 Economic and Health Benefits of Biking and Walking Study 

reveals the who, what, where, how, and why of bicycling, walking and 

health in the State of Colorado. It is a first of its kind and could set a 

national standard for gathering and legitimizing such data. 

Basis for selection The Colorado Governor initiated this program to increase bicycle safety. 

In the League of American Bicyclists’ 2018 progress report, Colorado 

ranked as the sixth most bicycle-friendly state. However, Colorado 

wants to do better. From 2007-17, Colorado experienced a sharp 

decrease in people riding to work on their bicycles and has continued to 

see threats to people riding their bikes. 

Point of contact Bicycle Colorado 
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 NJ Ambassadors in Motion (New Jersey, 2012), and Street Smarts NJ (New Jersey, 2013) 

Unique features While these programs are statewide programs, New Jersey is a 

geographically small State. Activities completed within this program 

range in audiences, with some examples including college students and 

children. Given the statewide coverage, there is a range of locations 

where program activities were completed. These include urban and 

suburban areas, as well as tourist locations such as the New Jersey 

shore. 

Known data available Ambassadors in Motion measures performance using the following 

metrics. Data for these metrics are included in the program’s annual 

reports: # of Statewide Events; # of Outreach Events at Target 

Locations; # of People Educated On-Street; # of Training and 

Educational In-Class Workshops; # of People trained and Educated In-

Class; # of Walking and Biking Events Attended; # of People Educated 

at Biking and Walking Events; # of People Indirectly Contacted; Total 

Persons Reached (Weighted); Complete Streets Policies Adopted 

Street Smarts conducts evaluations, but it is unknown what data are 

collected. 

Basis for selection Ambassadors in Motion is one of multiple pedestrian safety programs 

initiated by New Jersey as the result of being named a “Focus State” by 

FHWA and has history, reach, and appears to be collecting data.  

Evaluations of Street Smarts have been conducted, at least some data 

have been collected, and the program has history/significant outreach. 

Points of contact Ambassadors in Motion-NJ Bicycle and Pedestrian Resource Center 

Street Smarts NJ 
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 Heads Up (Maine, 2016),  

Bicycle Coalition of Maine (Maine, 1992), and Portland Area Comprehensive Transportation 

System (Maine, 1992) 

Unique features Heavy tourism, far northeast with snow and coastal conditions. Rural in 

nature with one small city (Portland). Portland has strong bicycle and 

pedestrian infrastructure. 

Known data available The Heads Up program began in 2016 by identifying focus communities 

that experienced the highest number of pedestrian crashes between 2011 

and 2015. These locations often represent the State’s most densely 

populated and “urbanized” areas. 

The Bicycle Coalition of Maine collects data on crashes, collisions, 

close calls, and incidents of bicyclist harassment. They collect this data 

because they believe it assists them in identifying issues faced by their 

constituents, as well as advocating for better infrastructure, education, 

and enforcement efforts. 

Basis for selection Maine has strong pedestrian and bicycle infrastructure and the State 

DOT is dedicated to improving ped and bike safety.  

In 2007 the Coalition led the successful effort to win passage of a major 

revision of Maine bicycling laws. A key provision requires motorists to 

give three feet of clearance when passing bicycles. This might assist 

with collection of data before and after the new laws.  

The Heads Up program collection of data between 2011-2015 would be 

useful for the evaluation. 

Points of contact Maine DOT Active Transportation Planner 

Bicycle Coalition of Maine  

PACTS, Senior Planner 
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 BikeArlington, and WalkArlington (Arlington, Virginia, 2009) 

Unique features Urban area with tourists, commuters, and residents as well as a large 

transit system and the possibility that people are biking or walking into 

Washington, DC. Residents include both lower and higher income 

groups. 

Known data available Rackspotter, counter data, and Bikeometer. Rackspotter is a free, 

crowdsourced tool available for web browsers and smartphones that can 

be used to identify bike parking locations throughout the greater 

Washington DC region. The counter data are count data for Arlington 

County. Resources for the count data as well as an online dashboard are 

provided. The Rosslyn Bikeometer is the first of its kind on the East 

Coast and sixth in the United States, preceded by versions in Portland, 

Seattle, and California. It provides a highly visible, engaging, and fun 

view of the volume of bike usage on the Custis Trail in Arlington. Ride 

past the Bikeometer and notice the daily bike count tick off another digit 

and acknowledge another car-free trip in Arlington County. The 

information displayed is real time and includes month and year-to-date 

data. 

There was a survey asking residents what type of rider they are, what 

type of trips they make, how comfortable they feel on different types of 

bike lanes and trails and what ways the county could encourage them to 

choose to bike more often. 

Basis for selection BikeArlington is an active program that combines events, training, 

education, and bikesharing with the availability of tools and data. 

Program use of tools like Rackspotter and the Bikeometer are fairly 

limited, so studying these tools and related outreach efforts may provide 

insight not found in other agencies.  

Arlington County is recognized as a Gold Walk Friendly Community by 

the Pedestrian and Bicycle Information Center. The County is one of 

only 15 communities across the country to have received a Gold rating. 

Arlington is one of nine communities profiled and featured in America 

Walks and the Every Body Walk! Collaborative’s book, America’s 

Walking Renaissance. An entire chapter of the book is dedicated to 

Arlington County’s success, calling Arlington “America’s Most 

Walkable Suburb.” 

Points of contact Arlington County Program Director and Design Team Supervisor 
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 Bikeology (Anchorage, Alaska, 2015) 

Unique features None 

Known data available Bikeology program participant records. Crash records from Alaska DOT 

and AAD volumes from Alaska DOT. 

Basis for selection The city has used the Bikeology program developed by the Society of 

Health and Physical Educators America with funding and technical 

support from NHTSA for some time.  They felt as though the program 

data were robust and also had quite a bit of traffic volume data.  

Additionally, there are unique environmental characteristics, such as the 

long stretches of darkness. 

Point of contact None 

 

 Boston Bikes (Massachusetts, 2007), WalkBoston (Massachusetts, 1990) 

Unique features Urban area with tourists, commuters, university students, and residents. 

Residents include both lower and higher income groups. 

Known data available Boston Bikes - By 2030 Boston Bikes’ goal is increasing bicycling 

fourfold. They collect and analyze data each year to understand their 

progress toward that goal. In 2016 they began a new annual bicycle 

count program using automated technology. They collect data at more 

than 60 locations over a 48-hour period in late September and early 

October. Over time, they can use this data to better understand how 

many people are already biking in Boston, and what they can do to 

encourage more people to go by bike. They also collect commuting data 

and bike share data.  

WalkBoston tracks pedestrian fatalities across Massachusetts through a 

robust monitoring of news reports. This information is more timely and 

more detailed than the tracking that is available through state or 

municipal sources. 

Basis for selection Boston Bikes is very much focused on data collection and evaluation. 

Much of what they describe on their web site aligns with what we are 

trying to identify for this project.  

WalkBoston has existed for over 25 years and works with over 115 

cities and towns across the State and may have data to share from other 

locations. 

Points of contact Boston Bikes 

WalkBoston, Executive Director 
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 BikePGH (2002), OpenStreetsPGH, Walk Works (Pittsburg, Pennsylvania) 

Unique features Urban area with tourists, commuters, university students, and residents. 

Topographical challenges with steep terrain and separated 

neighborhoods connected through city steps. Rainy and snowy 

environment. 

There is a possible rural component as well through SPC’s efforts in the 

region. They have multiple Walk Works groups in Indiana and Fayette 

Counties. 

Known data available Permanent bike counters placed in locations through the city. Recently 

completed a large survey/data analysis effort on mode choices. 

Counts are developed for Open Streets events. 

Basis for selection The city has been encouraging mode shifts through complete streets 

designs and has a mayor who strongly supports bike/ped initiatives so 

there appears to be a general swell of support and encouragement for 

walking and biking. The city and regional staff support data/information 

sharing. 

Points of contact BikePGH Director 

Southwest Planning Commission Transportation Planner 

 

 Great Rides Bike Share (Fargo, North Dakota, 2015) 

Unique features Colder weather, flat and open terrain, university students, operations on 

a seasonal schedule (open 8 months of the year, closed in fall and 

winter). 

Known data available Web site includes ride data both real time and historical, data includes 

start and end location of trips and duration. 

Basis for selection While the research team is unsure if there is enough data available to 

support an evaluation, this program would be interesting to study 

because of the unique university partnership, as well as the different 

climate and geography of Fargo as compared to other selected areas. 

Point of contact Great Rides Fargo 
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 Bike Austin, and City of Austin Bike/Ped Program (Austin, Texas, 1975) 

Unique features Urban area with tourists, commuters, university students, and residents. 

Known data available TXDOT project, “Evaluation of Bicycle and Pedestrian Monitoring 

Equipment to Establish Collection Database Methodologies for 

Estimating Non-Motorized Transportation” was conducted in Austin 

and Houston. Results may be helpful for this effort. 

Ride Report App has crowdsourced bicycle trip data. 

The city has permanent bike/ped counters.  

Basis for selection Austin is recognized as a GOLD Level Bicycle Friendly Community by 

The League of American Bicyclists. 

Austin was selected through national competitions by PeopleForBikes 

as one of 10 leading cities to join the Big Jump Project (2017) and as a 

groundbreaker city for its Green Lane Project. 

Austin was selected as the host city for the 2015 NACTO Designing 

Cities conference, the leading national event on the multimodal design 

of city streets. 

Austin was a leading city in the U.S. Department of Transportation 

Mayor’s Challenge for Safer People and Safer Streets. Austin received 

the program’s Ladders of Opportunity Award in 2016. 

Points of contact Active Transportation and Street Design Division Manager,  

City of Austin 

Bike Austin, President of Board of Directors 

 

  



 

  A-8  

 Look Alive (Baltimore, Maryland, unknown year) 

Unique features Urban area with tourists, commuters, university students, and residents, 

low and high-income groups. 

Known data available Basic crash statistics (e.g., number of death and injuries for pedestrians 

and cyclists in the region) are listed on the program's website. A social 

media toolkit is available that lists the dates and content of social media 

posts for the program. Look Alive conducts pre- and post-campaign 

surveys to measure awareness and attitudes among drivers, cyclists, and 

pedestrians. Detailed post-campaign reporting also includes impressions 

and engagement via paid media, donated media, news coverage, digital 

efforts, and outreach. 

Basis for selection This is a fairly comprehensive program integrating outreach and 

enforcement and it appears that they have conducted evaluations. This 

program seems to have a larger enforcement component than some of 

the others.  

Pedestrian and bicyclist fatalities in the Baltimore region accounted for 

50% of the pedestrian and bicyclist fatalities in the state in 2018. 

Point of contact Baltimore Metropolitan Council’s Principal Transportation Engineer 
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 Pima Association of Governments (PAG) Bicycle and Pedestrian Planning Program (Pima 

County, Arizona, unknown year) 

Unique features Arizona is one of the top states in the country for pedestrian fatalities 

and is involved in efforts led by FHWA to focus on pedestrian safety. 

While there are advances in Tucson, the State is generally considered to 

have less bike/ped friendly design/ atmosphere.  

Weather conditions – hot arid environment. 

Known data available PAG conducts a bicycle and pedestrian count every fall, relying on the 

support of jurisdiction staff and community volunteers to count at 

approximately 80 locations through the entire region. PAG began the 

program in 2008 to: Better understand trends/characteristics of cyclists 

by collecting data on: direction of travel, gender, age, helmet usage, 

sidewalk riding and wrong-way riding; help evaluate planning efforts; 

and help guide investments. 

PAG updates a Regional Bicycle Crash Analysis annually, with data 

dating back to 2001. The analysis is used to help identify mitigation 

strategies, such as wrong-way signs and pavement markings, as well as 

help identify enforcement education needed. It also quantifies the 

number of total crashes, crashes per population and fatal crashes. 

Basis for selection In 2006 and again in 2008 the League of American Bicyclists (LAB) 

recognized the Tucson - Pima Eastern Region as a Gold Level “Bicycle 

Friendly Community,” the first and only such regional designation in 

the United States. Bicycling Magazine has ranked the City of Tucson as 

the 2nd best bicycling city in the United States in 1995, 1999, and more 

recently, in 2006. The City of Tucson, Pima County, Oro Valley, and 

PAG all have full-time staff working on bicycle issues. There are also a 

variety of active, involved citizens, bike clubs and advocate groups 

working to support and improve cycling in this region. 

Points of contact Lead Planner, Bicycle & Pedestrian Program Tucson, Arizona 

Bicycle & Pedestrian Program Coordinator Tucson, Arizona 

Tohono O’odham Nation 
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 City of Davis, California, Bike and Pedestrian Program (unknown year) 

Unique features Urban area with tourists, commuters, university students, and residents 

Known data available In April 2018 The City of Davis inventoried all the bike parking in 

downtown Davis and collected occupancy data.  

There are two active bike counters in the City of Davis. 

There is an Eco-Counter PYRO Box on the shared use path west of Pole 

Line Rd between Drexel Dr and Loyola Dr. This counter uses a passive 

infrared pyroelectric sensor to detect bicycle and pedestrian traffic. This 

counter has a directional sensor. 

Basis for selection The City of Davis is one of the top bicycling cities in the country and is 

considered the bicycle capital of the United States. With over 100 miles 

of on-street and Class 1 bicycle lanes, the City of Davis provides 

bicyclists and pedestrians safe access to and from school, thereby 

eliminating the need for the school district to provide school buses. 

Points of contact Caltrans Pedestrian and Bicycle Safety Branch Chief 

Caltrans Senior Transportation Planner, Active Transportation Program 
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 North Central, Texas, Council of Governments Bicycle and Pedestrian Advisory Committee 

(unknown year) 

Unique features Includes one of the largest metropolitan regions in the United States – 

however both cities are less dense than other similarly sized regions. 

Generally unfriendly bicycling and pedestrian environment. 

Known data available TXDOT has been collecting and analyzing pedestrian and bicycle data 

throughout the state. NCTCOG also conducts regional bike/ped counts 

and analyzes regional bike/ped crash data. Has a bicycle opinion survey, 

as well. 

Basis for selection A notoriously poor environment for bicyclists and pedestrians that is 

working to improve infrastructure and encourage more walking and 

biking. The region and TXDOT have data that may prove to be 

beneficial for this task.  

The research team has been working with the region on bicycle and 

pedestrian efforts and have strong connections with NCTCOG, the 

cities, and TXDOT. 

Points of contact Program Manager, Sustainable Development NCTCOG 

Transportation Planner, City of Dallas 

Senior Planner, City of Fort Worth 
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 Delaware Valley Regional Planning Commission Bicycle and Pedestrian Planning Programs; 

Philadelphia Office of Transportation, Infrastructure, & Sustainability Pedestrian and Bicycle 

Program – Indego Bikeshare Initiative (unknown year) 

Unique features Urban area with tourists, commuters, university students, and residents, 

low and high income groups, and a robust transit system. 

Known data available DVRPC has an ongoing program to collect bicycle and pedestrian 

counts on roadways and trails throughout the region using infrared 

equipment. 

Basis for selection Known to have robust bicycle and pedestrian data. Recent Vision Zero 

programs in the city of Philadelphia might have information to use for 

this effort. 

Points of contact Director of Complete Streets, City of Philadelphia 

Director of Policy & Strategic Initiatives, City of Philadelphia 

Associate Manager, Office of Transit, Bicycle, and Pedestrian Planning 

 Fort Collins, Colorado, Safe Routes to School program, Open Streets events, Bicycle 

Ambassador Program, and Bike to Work Day Program (unknown year) 

Unique features Small city, more spread out with larger block sizes. Strong culture of 

walking and biking, platinum-level Bicycle Friendly City with over 285 

miles of bike lanes and bikeable trails. 

Known data available Individual crash records, short-term counts, program data on 

participants trained and outreach numbers.  

Basis for selection Number of programs focused on pedestrians and bicyclists.  

Points of contact Safe Routes to School Program Coordinator, City of Fort Collins 

Director of Policy & Strategic Initiatives, City of Fort Collins 
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